
NASACONTRACTOR

REPORT

MIDAS, PROTOTYPE MULTIVARIATE INTERACTWE -
DIGITAL ANALYSIS SYSTEM FOR LARGE
AREA EARTH RESOURCES SURVEYS

Volume I: System Description

D. Chistensoq M. Gordon, R. Kistler,

F. Kriegler, 5’. Lampert, R. Marshall,

and R. McLaqhlin

Prepared by

ENVIRONMENTAL RESEARCH INSTITUTE OF MICHIGAN

Ann Arbor, Mich. 48107

for Langley Research Ceuter

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ‘* WASHINGTON, D. C. . APRIL 1977

I - ..__.._ . ---. _-.. _ --.--.. ~~ -. ___

1. Report No.

NASA CR-2730
4. Title and Subtitle

2. Government Accession No.

MIDAS, PROTOTYPE MULTIVARIATE DTERACTIVE DIGITAL
ANALYSIS DSTEM FOR LARGE AREA EARTH RESOURCES
SURVEYS. Volume I: System Description

‘7* Author(s) D. Christenson, M. Gordon, R. Kistler, F. Kriegler,
S. Lampert, R. Marshall and R. McLaughlin

9. Performing Organization Name and,Address

Infrared and Optics Dimion
Environmental Research Institute of Michigan
P.O. Box 618
Ann Arbor, MI 48107
12. Sponsoring Agency Name and Address

Langley Research Center
National Aeronautics and Space Administration
Hampton, Virginia 23665

15. Supplementary Notes

5. Report Date
April 1977

6. Performing Organization Code

6. Performing Organization Report No.
ERIM 108800-49-F

10. Work Unit No.

11. Contract or Grant No.
NASl-13 128

13. Type of Report and Period Covered

Final Report, April 1974-
September 1975

14. Sponsoring Agency Code

Volume I of II. Mr. William Howle was Technical Monitor.
Topical report.
16. Abstract

MIDAS is a third-generation, fast, low cost, multispectral recognition system
able to keep pace with the large quantityand high rates of data acquisition from large
regions with present and projected sensors. MIDAS, for example, can process a
complete ERTS frame in forty seconds and provide a color map of sixteen constituent
categories in a few minutes. A principal objective of the MIDAS Program is to pro-
vide a system well interfaced with the human operator and thus to obtain large overall
reductions in turn-around time and significant gains in throughput.

This report describes the hardware and software generated in the overall pro-
gram. The system contains a midi-computer to control the various high-speed pro-
cessing elements in the data path, a preprocessor to condition data, and a classifier
which implements an all-digital prototype multivariate-Gaussian maximum likelihood
or a Bayesian decision algorithm operating at 2 x lo5 pixels/set. Sufficient software
has been developed to perform signature extraction, control the preprocessor, com-
pute classifier coefficients, control the classifier operation, operate the color display
and printer, and diagnose operation.

Volume I describes the MIDAS in detail. Volume II documents studies of several
forms of advanced processing and requirements therefore.

17. Key Words
Interactive

H eal-time processing

Wirewrap
Low-cost

Real-time processing MIDAS

Bavesian decision rule
Pipeline

18. Distribution Statement

Unclassified - Unlimited

Multispectral recognition system
Multivariate-Gaussian statistics -- I

19. Security Classif. (of this report) 20. Security Classif. (of this page)

Subject Category 62
21. No. of Pages 22. Price

UNCLASSIFIED I UNCLASSIFIED I 135 I $5.75

I.- --
-

PREFACE

A comprehensive multispectral:program devoted to the advancement of state-

of-the-art techniques for earth resources’surveys has been a continuing program

at the Environmental Research Institute of Michigan (ERIM), formerly the .Willow

Run Laboratories of The University of Michigan. The basic objective of this multi-

disciplinary program is to develop remote sensing as a practical tool to provide

the user with processed information quickly and economically.

The importance of providing timely information obtained by remote sensing to

such people as the farmer, the city planner, the conservationist, and others con-

cerned with problems such as crop yield and disease, urban land studies and de-

velopment, water pollution, and forest management must be carefully considered

in the overall program. The scope of our program includes: (1) extending the

understanding of basic processes; (2) discovering new applications; (2) developing

advanced remote-sensing systems; (4) improving fast automatic data processing
systems to extract information in a useful form; and (5) assisting in data collection,

processing, analysis and ground truth verification. The MIDAS Program, with its

improved data processing capability, applies directly to No. (4).

The overall program is guided by Mr. R. R. Legault, a Vice President of

ERIM and Director of the Infrared and Optics Division. Work on this contract was

directed by J.D. Erickson, Head of the Information Systems and Analysis Depart-

ment, R. McLaughlin, Head of the Processing Systems Development Section and by

F.J. Kriegler, Principal Investigator. Volume I of this report covers the system

description in detail.’ Volume II discusses several forms of advanced processing
and applications requirements.

In addition to providing the text, the authors’ individual contributions were as.

follows: Dempster Christenson, Vernon Smith, and Michael Gordon provided sys-

tern programming and diagnostic software; Roland Kistler, Rowland McLaughlin,

and Seymour Lampert provided the detailed design and performed system check-

out; Robert Marshall aided in overall system configuration and organized this re-
port. Michael’Schlansker and Prof. Daniel Atkins, consultants from the Electrical

Engineering Department of The University of Michigan, also contributed to this

program by developing the APL simulation of the processor, and by developing the

. . .
111

design approach to the pipeline divider sub-system in the preprocessor. The

authors wish to acknowledge the direction provided by Mr. R.R. Legault and Dr.

J.D. Erickson. Outstanding contributions were made by the following persons:

John Baumler, Clyde Connell, William Juodawlkis, Robert Pierson, Cary Wilson,

and Nancy Wilson for their efforts in system construction;

This report describes the scope of and the hardware and software generated
in the overall MIDAS program. In its development certain commercial products
were utilized and are identified in this report in order to specify adequately the
conditions and products used in the research effort. In no case does such identi-
fication imply recommendation, endorsement, or evaluation .of these products by
NASA, nor does it imply that such products are necessarily the only ones or the
best ones available for such applications. In many cases equivalent products are
available and would probably produce equivalent results.

iv

CONTENTS

1. THE MIDAS PROGRAM
1.1 Summary
1.2 Introduction
1.3 Background
1.4 An Overview of the System
1.5 Conclusions and Recommendations

. 1 1
1 1
1 1
8 8

11 11
16 16

2. MIDAS HARDWARE
2.1 Classification Pipeline
2.2 Data Path Selector
2.3 The Classifier

2.3.1 Scaling of the Classifier
2.3.2 Pipeline Organization of the Classifier

2.4 The Preprocessor
2.4.1 Angle Correction
2.4.2 Linear Transform
2.4.3 Ratio Operator

2.5 MIDAS Pipeline Hardware Description
2.5.1 The Classifier
2.5.2 The Preprocessor
2.5.3 The Pipeline Divider

2.6 RAMTEK Color Display System
2.7 Inkjet Printer

2.7.1 Printer

. 23 23

2.7.2 Control Interface ’
2.8 General-Purpose Components

3. MIDAS SOFTWARE
3 .l Introduction

.

3.1.1 Direction and Purpose of Software
3.1.2 Software Overview
3.1.3 Application Programs
3.1.4 Diagnostics

3.2 Operating System
3.2.1 DOS/Batch
3.2.2 MIDOS Initializer
3.2.3 Memory Management Service Routine (SERVE)
3.2.4 Error Handler Routine (ERROR)
3.2.5 Trap Handler Routine (TRAPS)
3.2.6 Trap Routines (TRAP KKK)

3.3 Application Programs
3.3.1 Data Base Control Program (IMAMAN)
3.3.2 Data Display Program (DISPLA)
3.3.3 Field Definition and Description (FLDMAN)

3.4 Statistical Programs
3.4.1 Signature Manipulation (SIGMAN)
3.4.2 Subroutine STAT

3.5 Hardware Control Program (CLASFY)
3.6 Post -Classification Analysis (PANALY)

APPENDM: THE USE OF APL IN HARDWARE SIMULATION

. .

23
28
32
37
40
40
43
46
47
47
47
62
69
80
80
81
81
84

. . . 86
86
86
87
88
90
90
91
91
92
92
92
93
95
95
97
99

100
100
102
105
107

. . . . 111

V

FIGURES

1. The MIDAS Midi-Computer and Special-Purpose Hardware
Configuration 4

2. CRT Monitors, Input Keyboard, Trackball, and Inkjet Printer 5

3. The Two Diva 29-Megabyte Storage Disks 6

4. Oscilloscope Traces Illustrating Processing Rate
of 5 Microseconds per Pixel 12

5. Master Menu Displayed Upon Entry to MIDOS 13

6. Data Display Menu with Parameters 14

7. Raw Data Display on Color CRT 15

8. Raw Data Showing Polygon Enclosing a Training Set 17

9. Signature Statistics 18

10. Sample Classification Map from Color CRT 19

11. Sample Classification Map from Inkjet Printer 20

12. The MIDAS System Hardware 24

13. The Classification Pipeline 25

14. A Pipelined Operation 27

15. Data Flow to Preprocessor. 30

16. The MIDAS Classifier 35

17. Block Diagram of Classifier Scaling 38

18. The MIDAS Preprocessor 41

19. Block Diagram of Preprocessor Scaling 42

20. Remote-Sensing Scanner 44

21. Additive Scan Angle Correction 45

22. Block Diagram of the Mean Card 49

23. Block Diagram of the Variance .Card. 50
24. Block Diagram of the Matrix Multiplier Card 52

25. Block Diagram of the Shifting Network and the Square
Function Card 53

26. Block Diagram of the Square-Accumulator Card. 54

27. Block Diagram of the k2 Card 56

28. Block Diagram of the Recognition Card 57

29. Diagram of Classifier Timing 58

30. Block Diagram of Clock Card 60

31. Block Diagram of Diagnostic/Output Card 63

. 32. Layout of Preprocessor Chassis 64

33. Card Interconnections in the Preprocessor Ratioing Section 72

34. Pre -Normalization 73

35. Non-Restoring Divide ; 76
vi

36. Post-Normalization ; 78

3’7. Block Diagram of Inkjet Printer Control Interface. 82

38. Block Diagram of %eneral-Purpose Components 85
‘A -1. APL MIDAS Simulation 112

TABLES

1. Design Approach Used in the MIDAS System

2. Functional Characteristics of MIDAS General-Purpose
Computer and Software

3. Functional Characteristics of MIDAS Display

4. Functional Characteristics of MIDAS Preprocessor

5. Functional Characteristics of MIDAS Classifier

6. Code Selection for the Diagnostic/Output Card

7. Outline of Functions Performed by IMAMAN

8. Outline of Functions Performed by Data Display

9. Format of Cards for Input to Field Manipulation

10. Outline of the Classification Functions

Il. Outline of the Post-Classification Analysis Functions

9

9

10

10

10

65

96

98

101

106

108

vii

MIDAS, PROTOTYPE MULTIVARIATE INTERACTIVE DIGITAL ANALYSISgYSTEM
FORXARGE AREA EARTH RESOURmS SURVXYS

Volume I: System Description

THE MIDAS PROGRAM

1.1 SUMMARY.

The MIDAS system, while larger than its implementation in concept, has now been im-

plemented as a prototype processor for remotely sensed data. With it, a user may load data

f.rom tape into the system, examine and analyze various portions of the scene using the color

display or color printer and then perform corrections, enhancements or recognition operations

on the data, obtaining these results in color maps or tabular outputs. The pipeline operates at

a processing rate of 2 K lo5 elements/second, or less if desired, for any processing operations

to be performed. At this rate, for example, MIDAS could classify a LANDSAT -1 or 2 frame

of data in about 40 seconds and provide color maps in a time ranging from about five minutes

to about an hour depending on the resolution desired. In fact, however, the time to carry out

such a procedure could range between a minimum of about one-half hour to about four hours,

depending for the most part on the user’s familiarity with his problem and the data. MIDAS

now provides a valuable tool for multispectral processing, enabling and facilitating progress

in applying remotely sensed data to the analysis, management and utilization of natural re-

sources.

1.2 INTRODUCTION

With the launching of the Earth Resources Technology Satellite (now LANDSAT-1) in 1972

and the manned Skylab with its Earth Resources Experiment Package in 1973, the NASA Earth

Resources Survey Program began employing large-scale space technology to add to the prer

vious programs of remote sensing from aircraft.

Earth resources information systems to aid in the inventory, allocation, and management

of Earth’s recources make use of a combination of disciplines. These systems employ a priori

knowledge of common practice and ecological relationships, modern sensors and data pro-

cessing equipment, information theory and processing methodology, communications theory and

devices, space and airborne vehicles, and large-systems theory and practice. There are, of

course, many different remote sensing techniques -e.g., gravity and seismic sensors; acoustic

sensors; static magnetic- and electric-field sensors; gamma- and x-ray sensors; sensors of

electromagnetic radiation in the ultraviolet, visible, infrared, microwave, and radiofrequency

regions of the spectrum. The remote sensing techniques which can be used from aircraft or

spacecraft are, however, limited to sensing electromagnetic radiation from the ultraviolet

through radio frequencies. The basic foundation of remote sensing is the use of these trans- +
ducer and sensor outputs to identify automatically materials on the Earth’s surface and to

determine their conditions. This is referred to as the discrimination capability of remote

sensing.

As used here, discrimination means the successive classification of larger classes of

materials into smaller, more finely divided subclasses, as in discrimination of conditions

,within a type or species after the type or species of the identified object is established. The

main concern is the extent to which these successively finer classifications can be made auto:-.

matically, if they can be made at all.. The division into classes is based upon information sensed

from a distance as opposed to in situ contact measurements. -- The economy and convenience of

the information system will vary directly with the degree to which these classifications can be

made automatically from remotely sensed data.

The rationale for automatic processing of multispectral scanner data is summarized as

follows:

(1) Automatic processing can be done in quasi-real time, that is, before the information

content of the data can significantly decay in value.

(2) Automatic processing of large volumes of data can be accomplished more cost-effec-

tively (not necessarily more cheaply) than manual processing and interpretation but

requires non-general-purpose computers for operational systems.

(3) Although information of the desired kind may be scanty, the data volume is exceedingly

high. Automating the reduction of this data volume to information frees people for

other creative tasks.

(4) Automatic processing offers a potential for a greater consistency of results with ob-

jective classification standards. Here, some would also mention its higher accuracy

as compared to manual processing.

(5) Derived information from automatic interpretation is in a form for quick and easy

integration with other data bases in automatic information systems such as for auto-

matic mapping and compilation of statistical records or summaries.

(6) Multispectral scanner data are generated and recorded in electronic form intended for

automatic processing, in contrast to photography in which film is the recording medium

(which has poor radiometric fidelity compared to that needed in automatic processing).

Basic to this process of classification or discrimination, is the concept of a signature. In

general, a signature is any collection of observable features of a material or its condition that ,.
can be used for precise classification. The features that make up a signature may all be ob-

served simultaneously or in a sequence of observations spread over a considerable time period.

Variations in four characteristics of electromagnetic radiation can be used to effect dis-

crimination between signatures. They are: (1) spectral variations (i.e., variations in radiant

power as a function of wavelength); (2) spatial variations; (3) polarization variations; and (4)

time variations, which can be of two types. The first type of time variation consists of changes

rapid enough to cause a Doppler shift in reflected radiation. The second type consists of

slower changes such as diurnal and seasonal changes. Each of these four variations in radiant

power may be employed separately in discrimination, even though they interact with each other.

2

However, in the research reported here, the emphasis is on spectral discrimination, because

some powerful techniques have been developed which exploit the spectral yariations.

A basic element of spectral discrimination theory is the realization that spectral signa-

tures cannot be completely deterministic. That is, spectral reflectivity and emissivity mea-

surements of natural objects exhibit some dispersion around a mean value (i.e., spectral signa-

tures are statistical in character). This should be expected, since it is well known that taxon-

omy based on any characteristics shows dispersion. Thus, as we will use the term, a spectral
signature is a probability density function (or set of such functions) which characterize the

statistical attributes of a finite set of observations of a material and can’be used to classify

the material or its condition to some degree of fineness.

In this report, we are specifically concerned with nonphotographic imaging sensors which

operate in the ultraviolet, visible, and infrared regions of the spectrum, i.e., multispectral

scanners.

MIDAS, which stands for gultivariate gteractive gigital Analysis f+tem, represents a

breakthrough in the field of multispectral scanner image analysis by providing a low-cost

regional center capability for user-oriented, interactive, near-real-time, digital analysis to

produce thematic mapping with instantaneous or multitemporal data. The system is shown in

Figures 1, 2 and 3. MIDAS is 10 to 40 times cheaper, and three to five times faster than

ILLIAC IV, and is reliable in operation. MIDAS accepts data from multispectral scanners in

the form of high-density digital tape, computer-compatible tape, or analog tape, and makes

use of proven multispectral processing techniques (including signature extension) within an

innovative hardware approach resulting in a cost-effective, user-controlled system for multi-

spectral analysis and recognition. Its hardware and software are intended to require a mini-

mum amount of instructional training for successful operation. MIDAS is intended to provide

accurate multispectral analysis for applications in disciplines such as agriculture, regional

planning, forestry, energy and mineral resource location, pollution detection, water resources

management, and others. Features may be extracted on the basis that their radiation proper-

ties are spectral, spatial, temporal, and (possibly) polarization dependent, thus giving a very

general and powerful capability..

The first MIDAS was built as part of the NASA Advanced Applications Flight Experiment *
program by EHIM to demonstrate the unique advantages of a modular, special-purpose multi-

spectral processor which offers a wide selection of high-performance subsystems, peripherals,

and features. In this machine the parallel digital implementation capabilities of a low-cost

processor are combined with a midi-computer to achieve near-real-time operation of a com-

plete processing system that includes multiple, user-selectable, preprocessing functions and

color displays. If provided in high density form, a LANDSAT frame of 7.2 x lo6 pixels (each

consisting of four values of 8-bits) could be classified in about 40 seconds on MIDAS due to

its 200,000 pixel/set peak classification rate. MIDAS, however, is not limited to a frame at a

3

FIGURE 1. THE MIDAS MIDI-COMPUTER AND SPECIAL-PURPOSE HARDWARE CONF’IGURATION

FIGURE 2. CRT MONITORS, INPUT KEYBOARD, TRACKBALL, AND INKJET PRINTER

5

FIGURE 3. THE TWO DIVA PQ-MEGABYTE STORAGE DISKS

time nor to four spectral bands at a time. Initial use demonstrates the effectiveness of this
innovative approach in contrast with that of using the large general-purpose computers pres-

ently employed in the Earth Observations Program.

A rationale for MIDAS can be simply stated. A particularly important and easily over-
looked aspect of applying a remote-sensing, multispectral system to aid in mapping crops,

detecting pollution, or locating some ecological disturbance is that the data can be processed

to provide the proper information to a user in a time short enough to meet his needs. Unfor-

tunately, some ongoing programs do not address this aspect of the system design problem,
for reasons which are rarely clear.

The magnitude of the discrepancy between the ability of a sensor to gather the data and the

ability of a general-purpose computer to process it becomes the next aspect of the problem to

be assessed. This enormous mismatch can probably be best appreciated by considering a brief
numerical example. An airborne scanner will, typically, gather data over a 32 to 48 km

flight line in about 15 minutes and record it on one reel of magnetic tape. A general-purpose

digital computer can be trained and can classify this data in a time about 100 times longer
than it took to collect it. Thus, the data collected in 15 minutes will require 1500 minutes of
processing. This would amount to three eight-hour days of processing. Given one such com-
puter to process the data, the aircraft should only be used for six five-hour sorties per year.

For satellite systems the mismatch is worse. Clearly, the discrepancy in capabilities is un-
acceptable.

EHM geometrically corrects LANDSAT data by (1) rotating the data so that N-S roads
are parallel to the edges of output displays, (2) deskewing the data to correct for Earth’s ro-
tation effects, and (3) matching the aspect ratio of the output display and scaling the output

image. ERIM has also received recognition for the development of computer-assisted pro-
cedures for correlating LANDSAT and geographical reference coordinate systems.

Another important objective of fast, low-cost but accurate processing is to facilitate con-

trol by the user. Classification of remotely sensed data is an interactive process in which the

person and machine must, in fact, be considered as the real processing system. It thus be-
comes evident that well designed, interactive display and control subsystems will, in reality,
offer the greatest gains in throughput. This also implies that the system should be considered
as a prototype from which further refined systems may be derived for specific operational
applications. To allow user tailoring of the operational system, modularity becomes an im-
portant design aspect.

The present system was conceived and constructed as a demonstration that a clearly better
processing system will materially assist in practical, economic realization of the benefits of
remote sensing.

. . -.--. - - ._----. ~.-- -- ---- ..~.~ - .- .- ___ --- ---- ..__- - . ~- --.. -_

1.3 BACKGROUND
The MIDAS program was to consist of two phases of development, each of a year’s duration

in which the basic system was to be designed and manufactured and then, in the second phase,
expanded and demonstrated. The objectives of the MIDAS program were to demonstrate

(1) that a high throughput rate can be achieved without loss of accuracy on MSS data from
satellites and’aircraft

(2) that large-area surveys can be classified quickly and at low cost
(3) a processing rate that was adequate to match the input rates from present or future

sensors and high density-digital tapes

(4) pictorial and enumerative results on data from a wide range of sources
(5) a realistic environment for reducing man-machine interaction without loss of accuracy
(6) that the regional processing center concept can be built around one relatively low-

cost (of the order of $0.5 million compared to $2-3 million for large general-purpose
computer system) like MIDAS and serve essentially all users with different applica-
tions

During the first phase the classifier, a pipeline machine able to accept sensor signals
and produce classification results, was developed and tested along with a general-purpose
controlling system based on the DEC PDP-11/45. In the second phase a pre-processor pipe-
line machine was added prior to the classifier and an interactive, display-based software sys-
tem was developed to allow efficient operation and management .of the various procedures by
a user. The design approach is summarized in Table 1. As a-result of these developments,
MIDAS constitutes a prototype able to process data for large area surveys quickly and econ-
.omicaLly in a quasi-operational manner or, of equal importance, a.device able to test the

feasibility of newly proposed applications of remote sensing quickly and accurately. Sum-
maries of the subsystem characteristics are given in Tables 2-5.

MIDAS, at this stage of development, is a prototype in other respects. Although the soft-

ware system, MIDOS (MIDAS Operating System) has been designed to provide an efficient
interactive control system for a user; it will require use in quasi-operational processing, and
in testing the feasibility of new applications, in order to realize potential processing gains.
Another principal use for a Midas system is in its function as a prototype for peripheral sys-
tems operating in conjunction with a large general-purpose system organized as a data-base
and data-management center.

MIDAS can also be considered as a prototype or a test-bed system in that it mechanizes
only those processing procedures now known to be not only useful, but also desirable to im-
plement in hardware. The processing pipeline is modular, in that additional processing re-
quirements can be.met by inserting other arithmetic operators in the pipeline and by increas-
ing or decreasing the parallelism as the need for such changes become apparent. Potential

system additions indicated by current research and needs of various programs would include

additional pre- and post-processor hardware for spatial array.processing and multi-temporal
analysis.

8

-_.~ ---____- -. _ ---. . _-_-
. ,_ ._

.--,.~:-;..‘--~’ - .., .,.. ..-.T--- TI----- -

. .

_ : ,: ~. . . .>
.,- .

L
‘_ ., .-.‘

TABLE 1. DESIGN APPROACH USED IN THE MIDAS SYSTEM

Implement with:
Commercial midi-computer and peripherals

Commercial displays

Special parallel-pipeline Preprocessor and Classifier
Special high-density digital tape and analog tape input
Special color hardcopy

Special software system for control and interaction

TABLE 2. FUNCTIONAL CHARACTERISTICS OF MIDAS GENERAL-PURPOSE
COMPUTER AND SOFTWARE

General-Purpose Computer:
Control element, CCT, Data disk, Diagnostics

Software:
Image manipulation and display
Training data labeling

Preprocessing analysis and application
Signature manipulation

Classification
Post-classification analysis with test area verification of performance

accuracy and N levels of statistical aggregation

Diagnostics

9

TABLE 3. FUNCTIONAL CHARACTERISTICS OF MIDAS DISPLAY

Unlimited arbitrary shaped training and test sets
Digital zoom and move
32 colors on 512 X 512 CRT
B&W menu with trackball cursor and user prompting
Color level-slicing
Solid-state memory refresh
864 x 1314-point inkjet in 90 seconds on 21.6 X 27.9 cm paper for

“walkaway” color images
Graphs
Histograms
Cluster plots

TABLE 4. FUNCTIONAL CHARACTERISTICS OF MIDAS PREPROCESSOR

User-selectable options on 16 channels
1-D and 2-D multiplicative and additive corrections
General matrix transform for linear combinations
Ratios of eight transform data variables
All at 2 x lo5 pixels/set rate
Diagnostic bus for intermediate results

TABLE 5. FUNCTIONAL CHARACTERISTICS OF MIDAS CLASSIFIER
Bayesian decision rule (maximum likelihood); easily changed

Multi-modal distributions (sum of Gaussians)
(1 + E) pass classification into 16 + 1 classes or 8 + 1 classes
Strip processing, not frame limited
Rate is 2 X lo5 pixels/set or landsat frame in 40 seconds
Diagnostic bus

10

--__-. --- - __~I_-- _1- _.:_i_
1 ,.‘.‘. -

---- -1---;-.--- - --- _,

._
; ‘,

;..-, .: ; : ‘. :.

Lastly, MIDAS and arithmetic structures based on MIDAS, have been and can be considered

as a prototype for sensor platform processing as a means of compressing telemetry data. This

may take the form of pre-processing sensor data into a smaller amount of almost equivalent
data by linear and non-linear transformations or by processing the data into classified results

encoded for transmission. Such applications may be tested or developed on MIDAS as a means

of proving such techniques or as a means of specifying the operations which may be performed

effectively in a spacecraft. Such investigations are already being done.

1.4 AN OVERVIEW OF THE SYSTEM

Some of the demonstrated characteristics of MIDAS are illustrated in the following dis-

cussion. The speed of the pipeline processor is shown by the test oscilloscope traces in Fig-

ure 4. Two pulse sequences from the master pipeline clock are shown in the dual trace pictures.
The master clock is obtained from a crystal oscillator through a chain of count down circuits.

The clocking rate of the pipe may be selected by computer control during the initial setup of

classifier parameters. The clock is described in Section 2.5.1 and shown in Figure 30. The
fastest rate is illustrated in the traces of Figure 4. Figure 4(a) shows the pulses on a hori-
zontal time scale of 1 &sec/cm. The upper trace pulse has a period of 5 psec (the basic pipe-
line rate of 200,000 pixels per second) while the lower trace contains 16 axis crossings in the

same 5-psec period. This is the time required to perform the function at any station in the
pipe. Figure 4(b) shows the same two-pulse trains on a horizontal time scale of 2 psecs/cm

and contains two processing steps. The clock is restarted (or bursted) each time a pixel is

sent from the data source. In this case the data is being sent at the rate of 1 pixel each 13
&secs. In this illustrated case the pipeline processor is waiting 8 &secs for data and then

processing the data in 5 @ecs.

The interactive process of using MIDAS is illustrated in Figures 5 through 11. Figure 5
shows the master menu displayed on the small black and white CRT (see Figure 2) at the start
of a data processing session. Assume that the desired data set has been loaded onto one of
the 29-megabyte high-speed discs shown in Figure 3. The cursor (the cross near the middle

of Figure 5) is moved by means of the track ball and is used to select “Data Display” by
superimposing the cursor upon the box to the left of “Data Display” on the menu. The data
display overlay is then read into the computer and the menu shown in Figure 6 is displayed.
In this figure are also shown the required display parameters fed into the system by the user
via the display keyboard (see Figure 2). An automatic-level.-setting program level-slices the
data into categories of grayscale. Figure ‘7 shows the resulting display of the raw data set

on the large color CRT.

The next step returns the user to the master menu (Figure 5) at which time “Field Manip-
ulation” is selected. This program overlay is brought into the computer, and the capability
to outline training fields on the raw data image is activated. The fields are designated by

moving the cursor to the vertices of an irregular figure (called a polygon) and depressing the

11

(a) 1 pixel, followed by dead time
(horizontal time base: 1 psec/cm)

(b) Interval of 13 psec between pixels caused by limitations of input device
(horizontal time base: 2 I.rsec/cm)

FIGURE 4. OSCILLOSCOPE TRACES ILLUSTRATING PROCESSING RATE OF
5 MICROSECONDS PER PIXEL

12

FIGURE 5. MASTER MENU DISPLAYED UPON ENTRY TO MIDOS

<’

FIGURE 6. DATA DISPLAY MENU MTH PARAMETERS.

I

F’IGURE.7. RAW DATA DISPLAY ON COLOR CRT

15

enter button on the track ball cursor control. The figure is closed by pushing the enter button.
twice at the same vertex. Figure 8 shows a polygon outlining the large lake near the lower
right edge of the figure. All desired training data would be designated sequentially in this
manner.

The next step is to return again to the master menu and select “Signature Manipulation.”
This overlay calculates the statistics which describe the data contained in the training data
sets outlined as described above. Figure 9 shows the results which are displayed on the black
and white CRT as the statistics for each signature are determined.

Following this, the master menu is again used to choose “Classification and Ratio’* as the
next overlay to be called into the computer. This program accesses the disc file in which the
signatures have been stored. The desired signatures are chosen from the-display, and the
MIDAS special purpose pipeline hardware is loaded with the appropriate coefficients from the
statistics associated with each signature selected.

When classification is complete (in the order of less than a minute, depending on the size
of the data set) control is once again returned to the master menu. “Data Display” is again
chosen, and in a manner similar to setting up the raw data display, a classification map is
shown on the large color CRT (Figure 10). If a hard copy of this classification map is desired

the inkjet plotter may be used to produce a color image on paper. Such a hard copy map of
the raw data is shown in Figure 11.

1.5 CONCLUSIONS AND RECOMMENDATIONS
The MIDAS system could be improved, possibly by a factor of 3, by the use of Speed.

higher speed MS1 and LSI technology. However, the present speed is adequate for classifying
multispectral data since the principal bottleneck in such operations is the human user. Class-
ification of a LANDSAT frame, for example, can be done in the MIDAS pipeline in about 40
seconds, but about an hour may be required to go through the machine-aided but human-
judgment-dependent analysis and training operations. Little improvement in throughput can
be gained from increased hardware speed when the user is the limiting element.

Review of the software programs and procedures in actual use of the system would best
serve to streamline human operations which in turn would produce significant increases in
speed, possibly by a factor of four. This is planned in the process of using the system.

Spaceborne Processing. The pre-processor and classifier pipelines of MIDAS can be put
to effective use in on-board spacecraft processing as a means of bandwidth compression and/
or pre-transmission analysis. Compression by a factor of two or three may be had from the
pre-processing operation. Compression by factors of four to five may be had from the classi-
fication process, in that a 4- or 5-band, 8-bit pixel is compressed to a 4- or 5-bit, single code
word. An overall data compression between 10 and 20 may be obtained.’

16

I --

FIGURE 8. RAW DATA SHOWING POLYGON ENCLOSjNG A TRAINING SET

17

(b)

(4

: FIGURE 9. SIGNATURE STATISTICS
18

FIGURE 10. SAMPLE CLASSIFICATION MAP FROM COLOR CRT

19

FIGURE 11. SAMPLE CLASSIFICATION MAP FROM INKJET PRINTER

20

II

A significant problem exists in such usage, however, and this is the need for in situ or a --
aposteriori processing. Interaction by a user to specify signatures and areas of interest is

required, thus making the compression gain,dependent on the overall system configuration in-:

eluding the user.

Bulk analysis of a fram,e prior to transmission seems feasible. In this manner a review

of a frame for cloud cover, for example, could be done on-line and the system could be set to

respond with a suitable code to convey only this information, or using a run length code pro-

cedure, to transmit only non-cloud data, if such were desired.

Rates of 100 x lo6 bits/second and higher are needed for some sensor systems. Depending

on the number of bands and the element rate, an advanced technology MIDAS could process such

data. MIDAS presently processes 25 x lo6 bits/second (16 channels X 8 bits X 2 x 109.

Using the same organization and faster components, data at a rate of 100 X lo6 bits/set and

could be processed.

A Prototype. MIDAS is a prototype. The system is aimed at use in an average region-

al processing center, sized to meet the throughput needs for an area of l/5 to l/10 the contin-

ental U.S.A. Its use in smaller or larger systems may be anticipated, yielding systems with

more arithmetic modules or less depending on the station size and regional demand. A great

portion of effort needed yet is to match the machine to the user. The present software system

is a first-pass design in what must be considered an iterative design process. Also, some

portions of the analysis related to optimum linear and ratio transformations, for example, are
not well enough understood at present to fix the shape of analytic programs, although the hard-

ware now exists. There is a need thenfor study of an iterative human-factor process and also

of the analytic nature of data transformation for subsequent classification.

Finally, with the recent advent of micro-processors able to operate in the speed range

below 100 nanoseconds, it seems likely that the MIDAS pipelines could be fabricated in the

future using this technology to obtain smaller size and greater economy, using, basically, net-

works of microprocessors. MIDAS, however, will provide valuable information to obtain a

refined system architecture for both hardware and software improvements for a period of

several years, thus functioning as a true and useful prototype system. .

Advanced Processing. Recent developments indicate the need for greater accuracy in

classification and in geometric correction; which creates the need for overlaying imaged data

from various times of the year and from various sensors, and providing image output to some

specified geometric accuracy. Given data which is overlaid, MIDAS can classify or enhance

such data with no modifications, assuming the spectral dimensionality of the data is not greater

than 16 (as would occur for four LANDSAT images, for example). Also, enlargement of MIDAS

capacity to greater than 16 dimensions is not a major change, if needed.

21

_,____._... - .---.- .~ I

However, the integration of geometric and spectral image processing is very necessary

and will require expansion of a MIDAS-like system. This can be done in a gradual, modular

manner using MIDAS as a base system. It thus appears that evolutionary development of such

forms of processing can be facilitated with MIDAS affording a test-bed facility well matched

to the developments anticipated, as the use of remote sensing becomes of greater importance

and practicality.

22

I -

MIDAS HARDWARE

MIDAS hardware is specially constructed to fit the needs of classifying multispectral,

remotely-sensed data. The core of this classification task is the specially-designed classifi-

cation pipeline (see Figure 12). Several key points along the pipeline communicate with the

DEC PDP-11 Unibus, a single path that connects most of the other pieces of equipment in the

MIDAS system in parallel. These other pieces of equipment, which include a DEC PDP-11/45

CPU, core memory, and numerous I/Odevices, support operation of the classification pipeline

by preparing its input, controlling its operation, displaying its output, and providing an easy-

to-use interface with the human operator. The remaining MIDAS hardware-the direct sources

of input to the classification pipeline -includes high density digital tape and analog devices.

A more detailed description of the classification pipeline section of the MIDAS system is

shown in Figure 13. The figure shows the three specially-designed processors that comprise

the pipeline: the Data Path Selector, the Preprocessor, and the Classifier. The additional

hardware in the figure includes a high density tape unit (HDT), an analog-to-digital (A/D) unit,

a digital-to-analog (D/A) unit, and DEC DRll-C and DRll-B standard Unibus interfaces. In

addition to enabling operation of the classification pipeline, this hardware provides a mechanism

for transferring multispectral data among several different storage devices.

The pipeline operation is outlined below, followed by descriptions of the Data Path Selector,

the Classifier and the Preprocessor.

2.1 CLASSIFICATION PIPE LINE

The classification pipeline, shown by the wide arrowed lines inFigure 13, is the core of

the high-speed classification process. The pipeline physically consists of a one-way data flow

through the three special high-speed digital processors: the Data Path Selector, the Prepro-

cessor, and the Classifier. The Data Path Selector, a data-routing piece of hardware, performs

the first step in the pipeline; it supplies the multispectral data to the remainder of the pipeline.

The data supplied consists of picture elements or “pixels” where each pixel can be considered

a vector of up to sixteen 8-bit data bytes or channels. The data comes from one of three sources:

the Unibus via the general purpose Direct Memory Access (DMA) interface, a DEC DRll-B;

the high density tape unit; or an analog tape unit. These three alternate inputs are shown by

the medium wide lines in Figure 13. The data input selected proceeds through the Data Path

Selector to the Preprocessor where processes such as scaling, angle correction, linear com-
binations, and calculations of ratios prepare the data for the key step, classification.

The actual classification of the data into categories is performed by the Classifier. Within

the Classifier, the single pipeline temporarily divides into four parallel pipelines to perform

fast simultaneous matrix multiplications. These multiplications are processed further, and the

results are fed sequentially into a decision process wherein each former pixel is classified

into one of up to 16 pre-determined categories or into a seventeenth class, meaning “none of

23

DEC PDP-11
System and
Peripheral
Devices

1

I

UNIBUS
output

t Displays

Classification Pipeline
Direct
Input

t

Data
Sources 4

FIGURE 12. THE MIDAS SYSTEM HARDWARE

24

-l DR-11C

A

v

I

I
Control 1

---- J

Data
Path
Selector

I

I

v
Preprocessor

I - +

DR-11B

L-J I
DR-11B

#2 #3

Classifier

I’I’I I Diagnostic Bus Diagnostic Bus D 1 ’ w

Analog Devices D F *
Pipeline Flow Data to

Pipeline

FIGURE 13. THE CLASSIFICATION PIPELINE

these.” For each pixel that entered the pipeline at the Data Path Selector, only five bits, a

category code, emerge from the Classifier. These five bits travel, by way of the Diagnostic

Bus and the DRll -B#3, to the Unibus, along the Unibus to core memory, and from core memory

to their final destination, the Diva disk. The Diva disk holds the data which may later be dis-

played by any of the number of output devices, including the RAMTEKColor Display and the

Color Inkjet Plotter.

The pipeline can classify up to 200,000 pixels in this manner every second. The very fact

that the structure is a parallel pipeline accounts for this high speed. The term parallel refers

to the four parallel branches of the pipeline within the Classifier. This parallel structure

makes possible the high speed matrix-multiplication operation. The term “pipeline” refers to

the assembly line form of operation for the whole process. In general, a pipeline operates as

follows: the many functions performed along the pipeline are divided into k sequential time

steps, all of equal time duration. This division is illustrated for the general case in Figure 14.

At any one instant,k separate stages are operating on k separate data values (Figure 14a). One

time-step later (Figure 14b), each stage supplies its output to the next stage for further pro-

cessing, and a new data value enters the first stage. This is accomplished by having a register

between each operational stage into which the output is strobed; it is done simultaneously at

all stages, thereby locking or latching up the results of each stage. These “latched” data then

serve as input to the next stage, while another data value enters the first stage. A pixel is de-

fined as always having 16 data values, therefore requiring 16 strobes or clock pulses to enter

a pixel into the pipeline; if fewer than 16 data channels are available the hardware in the Data

Path Selector provides the necessary filler data. The need for 16 clock cycles to enter a pixel

is dictated by the fundamental operation of the Classifier and its clocking operation. The de-

tailed description of the Classifier (Section 2.3) will explain this point.

The master clock for the MIDAS pipeline resides within the Classifier. The clock controls

the stepping of data through the pipeline and the addressing of coefficients in the random access

memories (RAM’s). Capable of operating in four fundamental modes with seven possible in-

ternally controlled frequencies, the clock also allows external control of the frequency. It

operates asynchronously, its sequencing initiated for each entering pixel by the external data

source.

Operation of the pipeline as described above requires two additional steps: program-con-

trolled setup before the process;and user -controlled diagnostics before, after and during the

process. Setup,in the pipeline consists of loading several RAM’s in the Preprocessor and the

Classifier with computer-generated numbers, numbers which include information about the data

set and which specify the criteria for classifying the pixels into the particular categories. Di-

agnostics consist of readback of data from registers in the Preprocessor and the Classifier at

several key points in the pipeline, yielding either results of mid-process calculations or clues

for debugging or trouble-shooting. This information, accessed via two multi-port diagnostic

26

Stage 1

Pipeline Input {Fk _,“e - DFe - DFue ----f Df!iue Pipeline Ozt

J

(a) Pipeline at One Instant in Time

Stage 1 Stage 2 Stage 3 Stage 4 Stage k
l

Pipeline Input
Data Value

n+l

Data Value Data Value Data Value Data Value Pipeline Output
e

n n-l n-2 n-k+2

(b) Pipeline One Time-Step Later

FIGURE 14. A PIPELINED OPERATION

buses,‘is available both to the CPU and directly to read-out devices. An example of usage of

the diagnostics subsystem is the optional routing of ratios of channels, calculated in the Pre-

processor, to the RAMTEK Color Display.

2.2’ DATA PATH SELECTOR

The special-purpose hardware selector though designed specifically for the classification

process, is capable of accomplishing some additional functions. In addition to playing a role

in the pipeline, the selector can, by setting up the appropriate paths, transfer multispectral

data among several different storage devices.

The Data Path Selector, which receives its instructions from the CPU via the DRll-C

interface, can set up various alternate data paths, including:

(1) Unibus to Pipeline (via the DRll-B #l)

(2) HDT to Pipeline

(3) A/D to Pipeline

(4) Unibus to HDT

(5) Unibus to D/A

(6) HDT to Unibus

(7) A/D to Unibus

The first three alternate pathways, described in the preceding paragraph, enable operation

of the pipeline with input coming from either the Unibus, the high density tape, or an analog
tape. The last four pathways enable transfer of data from either the Unibus, a high density

tape, or an analog tape to any one of these same storage devices. In these last four cases, the

data that comes from, or is routed to, the Unibus usually is data from what is commonly called

a “computer-compatibletape” (CCT), a standard-format tape compatible with DEC’s TUlO

magnetic tape drive as well as with IBM drives.

The control section of the Data Path Selector is responsible for receiving, interpreting,

and sometimes routing most of the computer -generated control instructions. These instruc -

tions specify

(1) data paths, as described in the last paragraph

(2) parameters for selective gating of data from any of the input sources

(3) channel and frequency information for the A/D

(4) frequency and mode information for the Classifier clock

(5) other control details

The instructions are sent by the computer to the Control section via the Unibus and the DRll -C

interface (the data path can be traced in Figure 13).

Since all the sources of data operate asynchronously with the MIDAS master clock, the

data path selector must accept data from the data source using the source’s clock and transfer

28

it as input to the pipeline using the MIDAS clock. This is accomplished by the dual register

approach shown in Figure 15. the first rank of registers is loaded under clock control of the

input device. When this loading is complete (pixel loaded) and the pipeline is ready to accept

it, all data values are simultaneously loaded into the second rank registers. The outputs of

these second rank registers are bussed together. The outputs are selected by feeding the 16-

phase MIDAS clock to a 4 x 16 RAM, the output of which controls the selection. Since this

RAM is loaded under computer control, any sequence of 16 registers (data channels) can serve

as the “pixel” input to the preprocessor.

2.2.1 HIGH DENSITY TAPE SUBSYSTEM

The HDT system can accommodate up to eight channels of information. This data is re-

corded in digital form on separate tracks of a wide-band instrumentation tape recorder in a

bi -phase code.

On playback, the outputs from the different channels of the tape recorder are fed to equal-

izers, one equalizer card for each tape track, to improve the signal-to-noise ratio of the

P.C.M. signal. From the equalizers, the signals are passed to bit-synchronizers where the

NRZ digital data and clock information are obtained. This digital information for each track

is then routed to sync detect-lock circuitry. In the detect portion of this circuit, the data is

collected into 16-bit words and is integrated for a valid 16-bit sync word. In the sync lock

section, a lock condition is established after one or more sync words have been located. This

circuitry also senses when the sync word is missing and defines an “unlock” condition which

reverts the system back to the sync detect mode.

In the following sections each of the cards that make up the data handling portion of the

HDT playback system is described.

2.2.1.1 Equalizer Card

There are eight equalizer cards in the HDT system, one for each of the data tracks .of the

tape recorder. In the playback mode, the system can operate in any one of four tape recorder

speeds. Each of the cards contain four equalizer-filters which correspond to the different

tape speeds. When the desired tape speed is established by the computer, the appropriate

equalizer-filter is switched into the data path. I

The system is conditioned in one of the four tape speeds from the computer using one of

the system conditioning commands established through the DRll -C.

2.2.1.2 Bit-Synchronizer Card-Playback Circuitry a-----..-
There are eight bit-synchronizer cards, one for each of the tape channels, which contain

circuitry that is involved in both the record and playback modes.

IIl, - put Clock ~ DATA
SOURCE

Input Clock

Load 15

I

Register 15*

Data

'I II

Register 0,

Load
0 - 15

Pipeline Clock

J

I 1 To Preprocessor Enable 15
4 to 16 line Decoder out

1,) 4 1

4 clock z
4 x 16

lines z 7 w Pixel Sequence Control

FIGURE 15. DATA FLOW TO PREPROCESSOR

30

In the playback mode, the bit-synchronizer card accepts a bi-phase signal from the equali-

zer and produces an NRZ signal and clock information. The card contains in addition to the bit-
synchronizer module, some additional circuitry which is selected by field effect transistor

switches as a function of the tape speed select lines. This circuitry optimizes the bit-
synchronizer for the bit rate which occurs at one of the four selected tape speeds. As above the

tape speed select lines are controlled from the computer through the DRll-C. The additional

circuitry consists of filters and a selectable binary countdown circuit.

The output signals from the bit-synchronizer card (playback) are: data, clock, 2 X quad

clock. The output signal 2 x quad clock is used in the sync lock-detect card.

The bit-synchronizer can be conditioned to operate in several different test modes which

are used as diagnostic checks on the system. One test mode involves the playback circuitry.

In this test mode the bi-phase input to the card from the tape recorder is removed and is re-

placed with a signal from a bi-phase generator under computer control.

2.2.1.3 Sync Detect-Lock Cards

There are eight of these cards in the system and the entire card is dedicated to the play-

back mode.

The sync detect section receives the NRZ and clock information from the bit-synchronizer

card. This data is serially loaded into a 16-bit register. As each bit is transferred into the

shift register, the accumulated word is interrogated to see if it has the same bit arrangement

as the sync word that defines the start of line. This sync word is established by a switch reg-

ister in the control section.

There are several features of the detect circuitry that allow the system to accommodate

data with some adjustment to noise condition. In the section that interrogates the incoming

data for the sync word, the detection circuitry can be conditioned by the control section to

allow for zero error or one-bit error in the sync word for a valid detection. The bit-by-bit

comparison of the incoming data with the defined sync word is accomplished by series of ex-

clusive “or” gates. The output of these gates is fed to a ROM which encodes the number of

errors in the comparison, and has as its output a binary word that represents this number.

The following circuitry when conditioned by the control section recognizes only a zero or one

bit error in the comparison and establishes the existence of a sync word according to the pre.-

assigned definition.

There are several signals from the sync lock section of the. card that are brought into the

detect circuitry. The function of these signals is covered in the sync lock description.

31

2.2.1.4 Sync Detect-Lock Card: Lock Section

The lock section of this card performs two functions. From the information obtained

from the detect section concerning the presence of a sync word in the data, the lock section of

each channel establishes a lock condition for the particular channel. Once the channel is in a

lock mode, the circuitry then monitors the occurrence of sync and generates control signals for

the FIFO card for that channel. If the sync word is missing for a pre-set number of scan lines,

the circuitry then removes the lock condition and places the channel in an out-of-lock condition.

The operation of the detect and lock circuitry operates for each channel independently. How-

ever, the algorithms that define the “lock” and “out-of-lock” modes are the same for all the

channels and are defined by switch registers.

The lock condition is obtained ln the following manner. In the lock circuitry a sync window

is defined (the same for all channels), which is a group of consecutive 8-bit words at the end

of the scan line and including the next sync word. In the system, the length of the window is

defined by a switch register in the control section and can be from zero to 32 words. When the

first sync is detected in the detect section of the card, a pulse is sent to the lock circuitry and

sets the word clock flip flop. This flip flop enables the bit-clock from the bit-synchronizer to

the word clock. The output of the word clock is fed to a word counter (10 bits) which keeps a

count on the 8-bit words in the scan line being generated. When the word counter reaches a

count equal to the total number of words in the scan line plus the number of words that make

up the sync window, (this count is established by the individual switch registers located on the

search lock card) a flip-flop is set which is defined as sync search. The sync search flip-flop

enables the word clock to the 5-bit sync window counter. If a sync is detected within the-sync

window a flip-flop is set which defines the lock condition. If, however, no sync has been de-

tected for the full window timing, the lock circuitry is reset and the channel is back to the out-

of-lock condition.

Once the channel is in the lock mode it remains in that condition as long as the sync de-

tections occur in a pre-set pattern. This pattern is determined by two bits that are defined

by a switch register. The sync detections within the sync window continue as described for

lock acquisition. When the channel is in the lock mode and the sync has not been detected this

fact is stored in a a-bit counter,and it is assumed that the sync occurs at the end of the #video,

window, i.e., where it would normally be located. If, a sync word is detected within the sync

window of the next line, then the a-bit counter is reset and the location of that detection within

the window establishes the start of the proceeding line. However, if consecutive detections

are missing for a number equal to the a-bit pattern as defined by a switch register, then the

channel is put in as “out-of-lock” and the sequence of detection, search and lock begins again.

2.3 THE CLASSIFIER

The Classifier performs the actual classification of the pixels into categories. The com-

putation it performs is a maximum-likelihood decision, assuming a multimodal Gaussian

32

multivariate distribution. This assumption has been well justified by many experiments using

multispectral data at ERIM and at LARS. Although simpler algorithms can perform well for

some data sets, a significant percentage of applications demand this powerful decision rule.

No penalty in speed and only a small additional cost occurs in using this algorithm. A digital

implementation of the algorithms was chosen over a hybrid or analog implementation because

the digital implementation

(1) costs somewhat less to fabricate,

(2) allows more exact repeatability in setup and performance,

(3) provides computer-controlled diagnostics more easily,

(4) uses the most current state-of-the-art digital techniques:,,

(5) produces a throughput equal to that produced by current hybrid/analog techniques.

The basic calculation to be performed is

where X is the input data vector (the vector of bytes in a pixel). The probability density func-

tion is Gaussian:

(X - Mi)T Si’(X - Mi) + PnlBil + n Ln

where vector Mi is the expected value of the X vector in category i, 0, is the variance-covari-

ante matrix for category i, and n, called the number of channels, is the- dimension of X, M,

and 8. Define m as the number of categories into which the data can be classified, so that i

ranges from 1 to m. Then formula (1) is calculated m times for each pixel, once for each of

the m categories. The smaller the result of the ith calculation, the higher the probability that

the pixel belongs to the ith category.

Formula (1) consists of three additive terms. The most difficult calculation in the equation

is the quadratic term

Qi = (X-Mi)T S;‘(X-Mi) (2)

The term Pi = enlQ,l, a constant for each of the m categories, is calculated prior to the classi-

fication process.

The choices of the number of categories, m, and the number of channels, n, are limited

because the number of computational steps increases (1) in proportion to m, and (2) as the

square of n. Two sets of choices are possible:

(1) m = 8 and n = 8, or

(2) m = 16 and n = 4

Note that before any processing can occur, the computer must load statistics (including

M and 0-l) about the data set and categories into RAM’s in the Classifier. Once these have

33

been loaded, the Classifier accepts each pixel, calculates Q, performs a normalization step,

then makes its final decision, as illustrated by Figure 16.

The design of the Q-calculating, or “Quadratic,” portion of the Classifier outlined in Fig-

ure 16 follows directly from mathematical manipulation of Equation (2). The equation can be

expressed in a number of ways to optimize the computation. Since the number of bits in the

Classifier is limited, it is desirable to express the quadratic calculation such that the calcu-

lated result has a very limited range. The variance-covariance matrix 8 can be expressed as

[Ql = bl [PI bl (3)

where [o] is a diagonal matrix of the standard deviation, and lp] is the correlation matrix with

all l’s on the diagonal and values of 0 to 1 off the diagonal (in some cases negative values may

occur). Taking the inverse of Equation (3) yields

[5+ = [i] lo]-l[;]
Substitution of Equation (4) into (2) results in

The terms (X-M)/0 can have a very wide range. However, if the range

-8 5 (X-Mi)/ai 5 8

(4)

is exceeded, the value of X for that channel is too many standard deviations from the mean to

be considered for classification. In this case, truncation of significant bits will occur, causing

a flag to be set in the Classifier indicating this condition. This indication is used later to re-

ject a decision that the sample is from the particular class.

The computation of Equation (5) could proceed in a straightforward manner, but can be

simplified somewhat due to the symmetry of the correlation matrix and its inverse. This

simplification can be accomplished in more than one way. One method is as follows:

(7)

where B is an upper triangular matrix formed by the decomposition of the inverse p matrix.

By calculating

lIy:yil = llBil
X-Mi [1 u.

1
(8)

the final matrix operation is simply

34

1’ QTJAT-IRATTC PTPF!” - Calrnlrrtoc Cl

X
Data

FIGURE 16. THE MIDAS CLASSIFIER

Matrix Multiplication

W
cn

Q = [YiITIYi] = f: Y~i

j=l
(9)

where the yji are the elements of the [Yi] vector.

There are four steps implied by Equations (7-9). These are

(1) subtract the mean from each channel

(2) multiply each result by l/a

(3) perform the Y matrix multiplication on each result of Step (2) to get Y’s

(4) square each resulting Y and add the results together

Another method for calculating Equation (5) is to express the inverse of the correlation

matrix p
-1 . in terms of its eigenvalues and eigenvectors. The correlation matrix can be ex-

pressed as

p =unuT (10)

where the U matrix is comprised of eigenvectors arranged in columns, and U
T is its trans-

pose. The A matrix is the set of eigenvalues on the diagonal. Taking the inverse of the cor-

relation matrix, it can be shown that

-1
P = UA’$JT (11)

which is to simply take the reciprocals of the eigenvalues and multiply by the two original

eigenvector matrices. One further decomposition brings us to the desired form

P
-1 = [u*-m] p-l/qJT]

where A -l/2 -1 l/2 means (A) .

Substitution of Equation (12) into Equation (5) yields

In this case, if a vector Yis defined as

y
i

= n - 1/2uT X-“i
i r I 1 u.

1

(12)

(13)

(14)
L- -J

and computed as such, then the final matrix operation can be performed in the same manner

as in Equation (9). The hardware required for this second calculation must perform more

multiplication than in the first method. However, in order to implement the first method ef-

ficiently, a more elaborate switching scheme is needed to avoid multiplying by a large number

of zeros. The details of this switching scheme were not worked out and only general consider-

ation was given to it. Since it appeared desirable to have the flexibility and capability to do

36

I -

the matr.ix multiplication required by either Equation (9) or (14), the hardware was designed

to do full matrix multiplication. Tests were run on over 100 signatures to see if the resultant

set of coefficients for either method appeared better suited to a limited-word-length multi-

plier. From these results it appeared that a slight advantage might be gained by using the

second method.

The Quadratic Pipe portion of Figure 16 outlines the physical realization of the calcula-

tion of Q. Note how closely it follows the four steps listed above. Precision throughout this

portion of the pipeline varies from 8 to 14 bits, with the significance increasing as the data

progresses from beginning to end. Q itself is a U-bit number.

Following the calculation of Q, the la-bit value is multiplied by a set of lo-bit values

called Kf, normalizing constants which are pre-determined parameters obtained from nor-

malizing the inverse variance-covariance matrix, 0 -1 .

The final decision stage of the process completes the calculation of Equation (1) by adding

in the logarithm of the determinant, then decides to which, if any, of the categories the pixel

belongs. This decision is made by (1) comparing the values “‘, fn{pr(X)] resulting from the

repeated calculations of Equation (1) with different M and 0 values, (2) choosing the cate-

gory corresponding to the smallest calculated value, if it is small enough, and (3) outputting

its 5-bit code. If none of the values is small enough, a reserved code meaning “none of these”

is produced.

2.3.1 SCALING OF THE CLASSIFIER

The calculation of the quadratic form given in Equation (2) above can result in a very

large number. Fortunately, we are not interested in the exact result for large values and,

therefore, can restrict the range, provided that an overflow condition is detected. The scaling

of the quadratic pipe is summarized in Figure 17. All arithmetic operations up to the input of

the squaring circuit are 2’s complement arithmetic. The input data is a g-bit word having

the range of values

-256 5 x s 255

or

0 5 x 511

We are interested in small values of X + (-p), but an overflow condition can be detected after

adding -1 which allows us to keep the result to eight bits. Following addition, a multiplication

by l/u is performed. A restriction on the range

is placed on the output of this multiplication. This in effect limits any data channel value to

less than eight standard deviations from the mean. It is to be noted here that a lower limit on

37

u is required and consequently an upper limit on l/u also. The limit selected is

u 2 1 + (l/2048)

or

l/u 5 1 - (l/2048)

which appears to be a reasonable choice based upon examining a number of signatures. Also,

it would seem reasonable that variation in the data for a given object class would show changes

in the two least significant bits.

The above two restrictions determine which high-order bits can be tested for overflow

and discarded at the output of the l/u multiplication. The five bits from 23 to 27 are tested

for. an overflow condition. If an overflow is detected, an overflow bit is put into and clocked

down a shift register, which is parallel to the pipe, in step with that data value, so that at the

final test for recognition that calculation is discarded.

The input to the eight matrix multiplier cards is comprised of the sign bit and the seven

bits from 22 to 2 -4 from the variance card. It is to be noted that this quantity (X-CL)/U has

zero mean and variance of one when the input data (X) originates from the same distribution

as that used to calculate cr and u. Similarly, after the matrix multiplication is performed in

the eight matrix multipliers, the y outputs have zero mean and a variance l/k where the con-

stant k is the largest value in the A -1’2UT matrix. This normalization of the matrix is done

in order to get maximum utilization of the 8-bit RAMS and their associated multiplier input.

Empirical study of more than 100 signatures indicates that the value of k is from a little over

1 to about 5. If the value of k were not factored out then the variance of the y output would be

1, and a test of

-8 'y 5 +8

could be used. In Phase 1 the overflow test was -8k 5 y 5 +8k which was found to be too large

a bound. Therefore a shifter was introduced into the pipeline, as shown in Figure 1’7, which

has the effect of making the overflow test

-8k’ 5 y 5 8k’

where

and

k’ = k2-”

using the proper integer for n. The output of the matrix multiplier is tested on the appropriate

bits for overflow.

The constant k which was factored out in the matrix multiplication is reintroduced in a

final multiplication stage. Since there is a different k with each object class, the set of k’s

39

can be normalized with largest k factored out. This again makes maximum use of the limited-

bit multiplier and RAM.

2.3.2 PIPELINE ORGANIZATION OF THE CLASSIFIER

The pipeline can be organized in many ways. Since the fundamental calculation is the

quadratic calculation for n categories of materials, there could be n pipes each performing the

quadratic calculation in parallel, or there could be just one pipe performing the calculation

sequentially. Speed of calculation and available integrated circuit hardware dictated the organ-

ization. It was desired to perform the quadratic calculation in 5 microseconds. The TTL inte-

grated circuits perform arithmetic operations in 200 nanoseconds or less; therefore about 25

arithmetic operations could be performed in 5 &sec. Since almost every arithmetic operation

requires a coefficient stored in a memory, 4-bit x 16-word random access memories (RAMS)

were chosen as the fundamental storage element. Thus 16 arithmetic operations are performed

in 5 I.csec. For example, a mean value is subtracted from data entering the pipe. There are

sixteen mean values stored in this operation. They could all be for one object class,or they

could be two object classes of eight means each,or they could be four object classes of four

means each. The last two were implemented. In the first case, the data vector must be en-

tered twice and the whole pipeline computes the quadratic for two object classes sequentially.

Eight object classes are computed with the four pipes. For the second case, where the data

vector is comprised of four data values, the vector is entered four times and each pipe com-

putes four quadratic values for four object classes thereby giving a total of sixteen classes

being computed in the classifier every 5 bsec.

2.4 THE PREPROCESSOR

The MIDAS preprocessor design provides for scan angle correction of data in both additive

and multiplicative modes, for taking generalized linear combinations of (angle corrected) data,

and for obtaining ratios of selected pairs of such combinations. Preprocessor outputs will

feed the MIDAS Classifier directly,and provisions are available to accept inputs in a variety of

formats. The Preprocessor will accept up to 16 input channels,and will supply either 4 or 8

outputs to MIDAS. Figure 18, a block diagram of the Preprocessor, summarizes the operation.

Data into the preprocessor may be in either of the following formats:

(1) 10 or less bits of 2’s complement

(2) 9 or less bits of (positive) magnitude

Other formats (negative magnitude, BCD, etc.) would require the addition of translators.

Input data is defined as being in the range -4 to +3 12’7/128 units for the first case or 0 to

+3 127/128 for the second case. These data formats and the entire Preprocessor scaling are

shown in Figure 19.

40

-

SCAN ANGLE CORRECTION

Data
Input

t . t
A ($1 B ($1

I 1 .
c Add A Multiply -

16 LINEAR COMBINATIONS

RAMS -
Store Cij’s

1

8 Outputs I Lines

3 Lines

FIGURE 18. THE MIDAS PREPROCESSOR

u
s

3 Inputs ;.

2

&
0” Y

RATIO CALCULATION /
I

D

N/D To
w

Classifier

-
s
a

7.
6

‘ADD’ ANGLE CORR. ‘MULTI ANGLE CORR.

LINEAR
COMBINATION
COEFFICIENT

OVERFLOW ’

I I

5
4
3
2
1
0

-

-4- + 3 t27
128

10 BIT 2’S COMP

-a a-
-.7 7.-

-6 12 + 12 6
-5 ADD 5-

-4
-3

Si + Ai($) ; -

-2 2-
-1 l-
-0 O-

127 o-+3128

9 BIT POS MAGNITUDE

-

i
OVERFLOW L

FOR OUTPUTS
OUTSIDE RANGE

-4- +3127
128

-I- +127
128

a BIT 2’S COMP

3

7
;

5

r

I

3

12 x 10
MU LT

[Si + Ai&)]

B?#JJ
=

Di

L

s- -
16 1
15 -
14 -
1x-
12
11 -
10 .

9
a

- 14
- 13
- 12
-11
- 10
. 9
- a

16 BIT
16 STE I
ACCUM

I

#6Ai~i

s. - S
14 - 10

‘3. . .g
12 a
11 1
10 6
9. 5
a- . 4
I 3
6 2
5.
4.
3
2
1
0

RATIO
SCALING
FUNCTION
-32- + 31

OVERFLOW
FOR OUTPUTS

OUTSIDE RANGE

S
10

.g
a
7
6
5
4
3
2
1

I0

DIVIDE
N K
5’” 2

-

s.
7
6
5
4
3
2
1
0

OVERFLOW
FOR OUTPUTS

OUTSIDE RANGE
-l-+255

256

12 BIT INPUT AS a BIT 2’s COMP

FIGURE 19. BLOCK DIAGRAM OF PREPROCESSOR SCALING

Data input maximum rate is one pixel (vector) per 5 psec. Each pixel may be described

by a vector of up to 16 channels, with maximum channel rate equal to 1 channel/300 nsec. For

less than 16 channels/pixel, channels should be repeated so as to provide 16 total inputs per

5 I.csec, before changing to a new pixel. All Preprocessor timing is under the control of, and

synchronous with, the MIDAS clock and input rates will therefore be a function of the selected

clock rate.

2.4.1 ANGLE CORRECTION

Scan angle errors are inherent in the method of collecting multispectral data using an

electromechanical scanner. Figure 20 shows a scanner collecting data from one “scan line.”

The scanner senses points, starting at angle 9 ‘= -$ m, sweeping to the right, and ending at

angle $ = +C,. In a set of scanned data, consistent errors may occur as a function of the

angle $J. Some reasons for these errors follow.

(1) The scanner aims directly perpendicular to the ground when $ = 0, but at a different

angle when $ is near f C m. Thus, sensed values may differ between the middle and

the end of the scan line.

(2) A longer distance must be traversed between the scanner and point A than between

the scanner and point B (see Figure 20). A longer path through more dust particles

and haze in the air will cause different results to be recorded than will a shorter path.

(3) The sun to the right or the left of the scanner will cause an uneven reflection pattern.

(4) Constant malfunctions or idiosyncrasies of the scanner as a function of $I are possible.

The Preprocessor can correct known scan angle errors in two ways.

Additive Correction. The Preprocessor can add to the pixels in every scan line a con-

stant, pre-stored function

A&J) = A0,A1>A2, . . . Ak-1

where k is the number of additive corrections per scan line, and each A is a 16-component

vector. If, for example, the result of scanning a uniform area produces a scan line of data

like the solid line in Figure 21, the Preprocessor can add back to every scan line the values

sketched by the dashed curve.

Output of the add function must be in the range -4 to +3 12’7/128. An overflow test is per-

formed to check the add output,and an overflow bit is generated which moves in step with the

data value through the Preprocessor to the Classifier where it eventually enters into the de-

cision process.

Multiplicative Correction. The Preprocessor can multiply the pixels in every scan line

by a constant, pre-stored function

B(C) = B0,B1,B2, - - - Bk-1

43

0 Sun

A B

FIGURE 20. REMOTE SENSING SCANNER

44

Corrected Scan Line Sum of Curves Below
.+.......

Scan Line from
Uniform Area
with Error

/’
A (a,) Value
to Add Back I\

v

FIGURE 21. ADDITIVE SCAN ANGLE CORRECTION

45

where k is the number of multiplicative corrections per scan line, and each B is a 16-component

vector. As Figure 18 shows, both an additive and a multiplicative correction can be made to

each pixel so that the corrected X, called ??, is

x = (X+A) * B

Before the classification process, the A and B arrays are stored in internal RAMS, though not

in the form Ao, Al, A2, . . . Ak-I. Instead, the RAMS contain Ao, AAI, AA2, . . . AAk, so that

A(#=j)=A +AA 0 1 +AA 2 +... + AA., where j can be any number up to 1024. Note that these
J

stored values can be chosen so that they will also scale the input channels at the multiplier

output.

The angle correction described thus far may be termed a “one dimensional” correction.

If the values stored in the RAMS can be updated between scan lines then the correction may be

termed a ‘Itwo dimensional” correction. This is possible if the input data is coming from the

Unibus. However it is not possible when the data is coming from HDT or analog tape.

Data from spaceborne scanners such as LANDSAT require that preprocessing functions

be updated periodically, but not necessarily for every scan line. The method of providing two-

dimensional angle correction in the Preprocessor is to have two sets of RAMS containing the

correction functions. One set is the active set providing the current correction functions

while the second set is being updated from the Unibus.

2.4.2 LINEAR TRANSFORM

The next stage of the Preprocessor, shown in Figure 18, performs the linear combinations

of channels . Input signals, having been corrected for systematic errors by A(G) and B($J), are

applied simultaneously to sixteen linear combination modules. The outputs of these cards are

wired into two groups of eight each. One group is termed the numerator and the other the

denominator for subsequent ratio processing. Each LC card performs the function $zo Aixi

where xi are incoming data and Ai are coefficients with range -2 to +l 15/16. Overflow tests

are performed on individual products for the range -4 to +3 8191/8192 and on the sum of prod-

ucts, whose maximum range is -4 to +3 511/512. It is evident, therefore, that magnitudes of

coefficients must be related to the number of non-zero coefficients; i.e., fo_r a sum of all 16

inputs, the maximum coefficient guaranteeing no output overflow is l/16. There are 256 values

of Airs to be stored, initially, in RAMS. Suitable coefficients can be stored such that

(1) the xi’s are unchanged

(2) the xi’s are in a rearranged order

(3) the xi’s are individually scaled

(4) there is a linear combination of any or all of the xi’s

(5) any combination of the above

46

2.4.3 RATIO OPERATOR
The ratio calculation stage performs eight divisions, then repeats these same eight divi-

sions again, providing the results sequentially to the Classifier. For each division, the stage

(1) chooses any one of the eight numerators provided by the previous stage

(2) chooses any one of the eight denominators provided by the previous stage or a constant

from the denominator RAM

(3) begins a pipelined divide operation

(4) supplies the results, five time-steps later, to the Classifier

The sequential choices of the numerator and denominator are pre-specified by the user in the

form of a code stored in another RAM.

The linear combination and ratio calculation stages enable powerful, flexible system use.

Among their applications are

(1) simulation of proposed scanners

(2) selective scaling of channels

(3) reduction of dimensionality from 16 channels to eight

2.5 MIDAS PIPELINE HARDWARE DESCRIPTION

2.5. I ‘THE CLASSIFIER

The classifier section of the MIDAS System consists of four bays, each containing 13 wire-

wrap cards. These bays are nearly identical in that each has the circuitry for one quadratic

pipe computation as described in Section 2.1. This computation requires twelve cards: (1) a

mean card, (2) a variance card, (3) eight matrix multiplier cards, (4) a squaring card, and

(5) a square accumulate card. These card types are described in following subsections. In

addition, each bay contains one of the following one-of-a-kind wire wrap cards: k2 card, rec-

ognition card, diagnostic/output card, and clock card; these wire-wrap cards are also described

in succeeding text.

The wire-wrap hardware employs Augat 8136-URGlTG universal circuit boards and 8170-

RGl card racks and back planes. The cards can hold up to fifty Is-pin integrated circuits

(ICs) or eighteen 24-pin ICs or a mix of both.

Mean Card

The mean card was updated from the one used in Phase I of the MIDAS program. It was

expanded from 8-bit capability to la-bit capability to handle the output of the preprocessor

divide card. This also permits the inputting of 8-bit magnitude numbers. The prime purpose

of this card is to sequentially add the stored -$ to the data vector component using 2’s com-

plement arithmetic. An overflow test is defined by overflow = 7 * 5 + 5.9 where 7 and 9 are

the adder output at those bit positions. This overflow test assumes that after the mean is sub-

tracted from a data vector the output magnitudes must be smaller than the input magnitudes if

47

II

there is any chance that the data vector came from the distribution associated with that vector.

The X inputs ‘are quotients from the ratio section of the Preprocessor. The output of the adder is

loaded into latches 74174 as processor outputs and into 8TIOs for diagnostic outputs. A block

diagram of this card is shown in Figure 22.

There are two selection devices on the mean card, one to select a RAM in that bay for

writing into that RAM and the other to select a diagnostic bus output to the diagnostic card.

In the RAM selection, a RAM write select comes from the clock card which does a bay select

decode to enable the decoder on the mean card; this also sends four bits to the decoder on the

mean card. A read pulse is then applied which can propagate through only one decoder input

on one mean card to a RAM on one other card in that bay. In the diagnostic bus output selec-

tion an identical procedure is followed except that the origin of the signals is on the diagnostic

output card.

Variance Card

The prime purpose of this card is to multiply an 8-bit number by a la-bit number and put

out an 8-bit result with overflow. There are no latches in the processing stream on this card,

but the diagnostic bus has a g-bit 8TlO latch. The input, X-p, is represented by

XXXXXXXX. (2’s complement number)

The coefficient l/a is represented by

x .xxxxxxxxxxx (2’s complement number)

Since l/o is never negative, the sign bit is always zero. The eight output bits of the 20-bit

product are selected from

X - -- - -XXX.X~X- - - - - --
11 I1 76 0
98 43

The overflow test simply consists of testing bits 14 through 19 to see whether they are all at

the same level. If so, there is no overflow and the overflow output is high. A block diagram

of this card is shown in Figure 23.

Matrix Multiplier Card

This card has two main functions: (1) to multiply [(X-LL)/U]~ by a coefficient, and (2) to

accumulate several products of this multiplication. The [(X-p)/ali input from the variance

card is stored in a latch on this card. The accumulator is cleared at the start of the matrix

multiplication for each signature computation. Each Is-bit product of the multiplication is

truncated to the high-order 14 bits and latched before being applied as one input to the accumu-

lator. The accumulator consists of a 16 -bit adder with a feedback latch providing the second

input. The two expansion bits in this accumulator are adequate for eight adds since the largest

product is 212(the result of (-27) X (-27) after truncation). Added eight times, this number

yields 2
15

, which is the largest negative la-bit number. Since the two operands were negative,

48

I -
.-

Clock

1

16-Word X

12-Bit RAM

~ to Overflow
Register

Data
Bus

1
t 12-Bit

Adder

Clock

- output
Latch
Clock

-to Variance Card

Strobe
from
PDP; 1 l/4 5

Diagnostic
Latch

to
-Diagnostic

Bus

RAM Location ie/--&E$F Load

Strobe from
PDP 11/45

1

FIGURE 22. BLOCK DIAGRAM OF THE MEAN CARD

49

Clock

1

Overflow
* Test

To Overflow
Register

12-bit x 16-word
RAMS

Clock

I
Diagnostic 9 bits to

l/O * Latch - Diagnostic
Bus

f I 1
Data 8-bit x 12-bit - Multiplier

8 bits
8 Pole to Matrix t Switch Multiplier

Cards

Switch
Control

FIGURE 23. BLOCK DIAGRAM OF THE VARIANCE CARD

50

_
I --

the accumulated products should be positive. Hence, for this special case the overflow has

caused an error in sign only. However, #is number is to be squared in the next step, thus

correcting the only possible error. There are processor data-stream output-latches (8TlOs

with 16 bits) and diagnostic bus latches (8TlOs, also with 12 bits). These latches are enabled

at the proper time by the MTXMPX signal from the square-accumulator card and loaded by

CO, the fundamental clock frequency. A block diagram of this card is shown in Figure 24.

Square Card

The first operation preparatory,to squaring the matrix multiplier output, is to perform the

shift as described in section 2.3.1. Next the overflow test is applied to the four to six most

significant bits (depending on the shift used), and the square input is reduced to the next 10 most

significant bits, not included in the overflow. A 10 X 10 bit square operation is then performed on

the card. A block diagram of this card is shown in Figure 25.

Square Accumulator Card

This card’s main function is to accumulate the squares from the square card. It has both

input and output latches as well as feedback latches. It has a 13-bit input (the 2 MSB’s and the

low-order seven bits from the 10 x 10 square are not brought in). The adder is 16 bits and three

expansion bits are provided for eight adds. The twelve most significant bits are brought out via

8TlOs on both the processor data path and diagnostic path. The diagnostic bus is multiplexed from

the diagnostic/output card, whereas the processor bus is multiplexed from the k2 card. The

square-accumulator card also has a number of control functions. It

(1) acts as a buffer for the clocks (bay buffer)

(2) multiplexes the matrix multipliers (enables 8TlOs on the two output busses which are

then loaded at the next CO clock)

(3) controls the matrix multipliers’ output bus to the 10 X 10 square card using a 3 -line to

8 -line decoder

(4) clears the matrix multipliers’ accumulators

(5) clears its own accumulator

(6) multiplexes its own output 8TlOs to the processor and diagnostic busses

(7) contains an overflow shift register. Overflows from the mean, variance, and 10 x IO

square cards are loaded into the shift register and then dropped into the overflow out-

put register (8TlOs) at the proper time

A block diagram of this card is shown in Figure 26.

k2 Card

The main function of this card is to perform lo-bit by la-bit multiply. The la-bit data

comes from the square accumulators and the lo-bit data is the k2 normalizing constant. Its

input is buffered and there are no input latches since the outputs of the square-accumulator

cards are latched and are bussed into it. There is a 7-4174 output latch register.

51

Clock

f

8-bit x 16-word
RAM

Clock Y

i
Coefficients ’ Clock

I
Data

I1
Processor

- Latch
8-bit x 8-bit - w Latch - 16-bit _
Multiplier Adder

Clock

Clear

Clock
i

Clock

#$$$DiXgnostic

FIGURE 24. BLOCK DIAGRAM OF THE MATRIX MULTIPLIER .CARD

I - -- --

Clock

I
I I,+,

FIGURE 25. BLOCK DIAGRAM OF THE SHIFTING NETWORK AND
THE SQUARE FUNCTION CARD

53

Clock Clear

Clock

Clock

Clear Matrix
- Multiplier

Accumulators

Clock

4
Diagnostic

* Latch
Diagnostic
Bus ,

Clock

Clock

cl--

3-line to
8-line

Matrix Multiplier Input
t Decoder Data Bus Control

Clock

t
Matrix
Multiplier
Output Data
Bus Control

FIGURE 26. BLOCK DIAGRAM OF THE SQUARE-ACCUMULATOR CARD

I-- ---
-

Another function is to control the square accumulators’ bus, which it feeds using a a-line

to 4-line decoder. The signal that multiplexes the output bus also multiplexes the overflow

bus to the recognition card. A block diagram of this card is shown in Figure 27.

Recognition Card

The main function of this card is to determine which calculated material’s exponent is the

minimum. It also performs the Chi2 test on the sum of the squares. At clock times 5 and 13

a new set of sum of squares from the k2 card becomes available. A 14-bit add is performed

with the Ln IDI input truncated to bits 0 through 11, while the sum of squares is a 14-bit number

in bits 0 through 13.

The selection time of the overflow into the recognition logic is the same as the selection

time of the square accumulation output; therefore the overflow shift register output must have

two stages of latches to make up for the delay in the k2 multiply and in the Pn :Dl add on the

recognition card. Similarly, the output of the Chi2 test must be latched to account for the en IDI

add delay.

A new sequence of testing begins at clock time 8 for the 8-channel set-up or at clock time

14 for the 4-channel set-up. At these times the previous recognition result is transferred to

the output latches. There are two internal holding latches, one for exponent and one for ma-

terial number. After loading these two quantities into the output latches, the internal ones are

cleared. There is an artificial seventeenth bit set at this time which makes the stored expo-

nent look as if it is larger than anyl6-bit computed exponent. Thus,the first test will always

succeed and the exponent will be stored if no overflow has occurred. When this condition is

met the artificial bit is reset. The material code is a 5-bit number. It is MSB OXXXX

where the X’s give the material number (0 through 15); code 16 indicates no material selected.

A block diagram of this card is shown in Figure 28.

Classifier Timing Card

The Classifier consists of the four “pipeline” computers in parallel whose outputs finally

converge on the circuits to scale the exponents of the density function and intercompare these

exponents for a decision. The sequence of operations can be visualized as shown in Figure 29

where data is shown entering the A-D converters at t = -16 in the upper left corner of the dia-

gram. A sample, consisting .of a vector of eight elements of eight bits each is passed through

the computational circuits indicated and emerges at the bottom right of the diagram as a classi-

fication code of five bits. The general appearance and function of the arithmetic operations so

diagrammed is that of a “cascade” in which the breadth of the cascade in time is proportional

to the computational load of a particular circuit.

Each “pipe” or “cascade” processes the computation of the quadratic form for the expo-

nent of the Gaussian distribution for two distributions. There are, then, a sequence of alter-

nating computations of the first exponent in cascade 1, the second exponent in cascade 1, the

55

Clock

1

12-bit RAM

k2 Normalizing Constant
Clock

Data lo-bit X
Bus - Buffer 12 -bit

Multiplier

FIGURE 27. BLOCK DIAGRAM OF THE k2 CARD

Chi2 Value

Data
Bus

I Greater
t Than

16-bit Chi2
---t Compare --A Clock

d&-k-,

16-bit 16 -bit
- Adder - Latch 17-bit

A-
- Gate -

Compare Be

Clock

Strobe
Store

Value

FIGTJRE 28. BLOCK DIAGRAM OF RECOGNITION CARD.

% -to= At= 312nsec

$16 I yo I $5, %6 1 t3 $32 1 t47,t48 I t631

Sample
l-

x-out

X-P

CY2

-

xk2

% f n ID 1 = Exponent {expi)

Compare Exponents {expi)

Min. Exponent = Decision
t- Decision, D

FIGURE 29. DIAGRAM OF CLASSIFIER TIMING

I --.

third exponent in cascade 2, etc. In the present machine, there are four such cascades oper-

ating in parallel, allowing the computation of eight exponents at once.

The timing diagram (Figure 29) shows the flow of two exponent computations and the re-

sulting decision, neglecting the fact, for the sake of simplicity, that the cascade would normally

contain portions of other computations for the preceding and subsequent samples. Data is en-

tered into the A-D converters and is available for computation at the end of 16 machine cycles,

or approximately 5 j.&ec. Data latched in the converter outputs is then, supplied sequentially

(Xl’ 3’ * l * X8) via a multiplexer and subtracter to a latch, and one clock cycle per element

is allowed for this operation. At t = 0, 1-(1 is subtracted from X1; at t = 1, p
* 2

is subtracted

from X2, etc. Also, at t = 1, (X1 - ~1) is multiplied by (l/u i) yielding Xl. At t = 2, X* is
5

supplied to each of eight multiplier-summers which compute the products (XT. Pll), (Xl*Pzl),

. . . (XI’P81) and enter these into the summers. At t = 3, the multiplier-summers compute

(x;‘p12); (x;~p22) . - . (Xl * P82) and add these products to the previous results. Thus at

t = 10 the summers contain the complete sums of products for all matrix operations. Each of

the eight multiplier-summers may, as a result, be considered as a row operator since it ac-

complishes the sequence of multiplications and summations for a particular row.

As the result of the above transform, all the elements of this vector are uncorrelated;

therefore it needs only to have its elements squared and summed to obtain the normalized

quadratic form for the exponent. This is accomplished during cycles t = 10 to t = 18, allowing

one cycle for each squaring operation and a final cycle for storage of the summation.

At this point, the exponent must be re-scaled and the natural logarithm of the determinant

of the covariance matrix added to obtain the final exponent of the density function. This requires

two cycles. The comparison of these exponents, now becoming available from the normaliza-

tion circuitry, begins as each exponent appears. The procedure is to examine all exponents

sequentially to choose the smallest, assuming that one is less than a threshold test value which

is entered first, and to retain at all times the lesser value of two sequentially examined ex-

ponents. The number of the exponent retained specifies the class of the input vector. This is

available to be displayed, printed on film, or supplied to the computer for logging or subsequent

processing.

The cascades may also be used to process an increased number of distributions for a

lesser number of channels. Thus for a 4-channel source of such as LANDSAT, the operations

of the various arithmetic units may be time-shared to provide 16 instead of eight class de-

cisions for eight channels.

Clock Card

This card has two main purposes, to generate timing pulses to control the 16 steps in the

processing of a data vector, and to control the loading of the RAMS during system setup. A

block diagram is shown in Figure 30.

59

Clock Select In RAM Load Input

i 1
I

Holding Register

r
Burst Mode

T
RAM Address

-T-
J L c’ Low-Order 4 bits

to RAM
- Inputs

Clock
- outputs

Cl-C4

FIGURE 30. BLOCK DIAGRAM OF CLOCK CARD

I --
-.

The timing pulses, or clock pulses, are derived from a master oscillator. A countdown

is program-selectable in six steps providing clock pulse CO at rates from 3.2 MHz to 100 kHz.

Other clock signals are labeled Cl to C4 and a to c4.

The signals Cl to C4 are used for classifier control, whereas CO is used for laading

latches at the end of a clock period. The circuitry can operate in a burst mode with or without

reset to zero. The burst mode is used when operating the system using data coming from the

computer. The.clock can be set to count up from zero to 127. Sixteen steps are required to

process a data vector. These are provided by setting the clock counter at 15, thereby allowing

the sixteen steps 0 through 15. The clock is started by the computer when the computer has

loaded the data vector into the second rank of the data register (latch “B” .on the hybrid cards).

TheClassifier processes this vector and stops until the computer has loaded a new data vector.

If the computer loads a new vector first, however, the logic waits for the clock to finish before

a new start signal is accepted by the clock.

Control of RAM loading during system setup is accomplished by means of logic on the

clock card. Timing pulses and routing control are provided (see Figure 30) which transmit

the contents to any selected RAM by replacing the clock pulses Cl through C4 with the low-

order four bits of the address word. The addressing and loading of RAM constants is accom-

plished by the following sequence:

(1) SEND WORD 1, DATA READY AND END CYCLE

(2) UPON RECEIPT OF CYCLE REQ. SEND WORD 2

(3) UPON RECEIPT OF CYCLE REQ. SEND NEW WORD 1

(4) REPEAT 2

The process stops when the word count register in the DR-11B increments to zero

The two-word transfers of RAM coefficients are

WORD 1 CODE BAY RAM ADD
0000 0 DDD

- -
DDDD DDDD

MSB MSB MSB

WORD 2 CODE RAM CONSTANT
0001 DDDDDDDDDDDD

MSB

Note that D is DATA -0 or 1, as the case may be; BAY is binary-coded 0 to 7 (only O-3 are

used); and RAM is binary-coded:

0 = MEANS

1 = VARIANCE

2=MTXO

3=MTXl

4=MTX2

5=MTX3

61

6=MTX4

7=MTX5

8=MTX6

9=MTX7

lO=k2orCHI (k2 in Bay 2;

11 = LN (Bay 3 only)

12 = SHIFTER

ADD is binary-coded O-15 for internal address

CHI in Bay 3)

of a RAM.

Diagnostic/Output Card

The diagnostic/output (D/O) card is the prime output port for classifier-generated signals.

Inputs to the D/O may originate on the recognition card (5-bit material code and/or @-bit ex-

ponent value) or at any access to the classifier diagnostic bus. Outputs from the D/O card are

presented as a Is-bit word to the computer interface and as an 8-bit word to a display interface.

The D/O card has two input registers for holding the values of material and exponent from

the recognition card and one register for holding the diagnostic value (see Figure 31). Con-

tents of these three registers are combined and switched to the two output ports under control

of the classifier clock and a computer-selected command word.

The command word establishes the desired output formats and selects a time and place

for sampling the diagnostic line. The command word is stored in a register and will command

the same outputs to repeat twice each classifier cycle until a new command is sent.

Available output formats are as follows.

(1) At the computer interface:

(a) the full 16-bit exponent value

or (b) eleven most significant, exponent bits plus a 5-bit material code

or (c) 12-bit diagnostic plus 4 zeros

or (d) a composite word, presented once each cycle, consisting of two 5-bit material

codes

(2) At the display interface:

(e) the eight MSBs of the exponent

or (f) the eight MSBs of the diagnostic

or (g) 5-bit material code

Any combination of the above computer and display outputs may be selected by the appro-

priate command except that (d) and (e) are not available simultaneously. The outputs are spe-

cified by the codes in Table 6.

2.5.2 THE PREPROCESSOR

The Preprocessor section of the MIDAS pipeline consists of four bays of wire-wrap cards.

A diagram of the chassis layout and position of the various cards is shown in Figure 32. There

62

Input from
Recognition

CaFd Output Selection Code
In

Holding

II

Holding
Register Register

(Exponent) (Material)

Input from
Diagnostic Bus

1
J ,

t

Time & Address
Decode

Clock
Inputs

’ 16 -bit Output
to Comp.

B-bit iutpu,
to Display

Interrogate
Diagnostic
Bus

FIGURE 31. BLOCK DIAGRAM OF DIAGNOSTIC/OUTPUT CARD

17 19 21 23 25
BUFF

ER

- SOCKET NOS. 1 3 5 7 9 11 13 15
X X X X X x x x

AR0 AR1 AR2 AR3 AR4 AR5 AR6 AR7

0
Tiz

Y

Leo

1
7s

Y

LCI

2
GiE

Y

3
hRll

Y

I
I 1

4
xiz

Y

Lc4

5
Eii?

Y

Lc5

6
hR14

Y

‘I
I
AR15

Y

LC2 LC3

T
Lc6 Lc7

(a)
BAY 0

-iii-
hRL

-CARD NOS a
GE-

Lee

Lc12

9

Lc14 Lc8

i- 3

Lc13

9
INCR

COM

I L I
I

DIV

b)
BAY I

x15 PRE

I
15 17

k)
BAY 2

SiiY

21

POST Eii Eii

(d
BAY 3

5 7 23 25

VIEW FROM CARD SIDE

FIGURE 32. LAiOUT OF PREPROCESSOR CHASSIS

64

TABLE -6. CODE SELECTION FOR THE DIAGNOSTIC/OUTPUT CARD

CODE

10001

01001

10101

01101

11101

10011

01011

11011

10111

01111

11111

TO COMP

000 MAT @ 000 MAT

000 MAT @ 000 MAT

11-BIT EXP @ MAT

11-BIT EXP @ MAT

11-BIT EXP @ MAT
DIAG 0000

DIAG 0000

DIAG 0000

EXP

EXP

EXP

TO DISPLAY

000 MAT

DIAG @

000 MAT

DIAG @

EXP @

000 MAT

DIAG @

EXP @

000 MAT

DIAG @

EXP @

NOTES: 0 8 most significant bits of 12

0 11 most significant bits of 16

0 8 most significant bits of 16

@ This output appears every second process
cycle; all other outputs appear every cycle.

65

are a total of 52 wire-wrap-card positions that make up the Preprocessor chassis. However,

not all of them are filled. Figure 32 shows 16 positions for “Delta RAM” cards designated AR.

Only four of these cards have been constructed. The significance of this will be discussed

later. Of the 52 card positions there are 12 different card designs. These are: (1) Delta

RAM (AR), (2) Delta RAM control (ARC), (3) Increment (INCR), (4) ADD, (5) Multiply (MULT),

(6) Delta RAM Load (ARL), (7) Linear Combination (LC), (8) Linear Combination Control (ICC),

(9) Command (COM), (10) Prenormalization (PRE), (11) Divide (DIV), and (12) Postnormaliza-

tion (POST). These card types are discussed in the following subsections.

Delta RAM Card

The Delta RAM card is basically a 4-bit by 256-word RAM repeated eight times on each

card. Since the angle correction function is generated by increments at equally spaced.pixels

or point numbers, the angle correction function in the one-dimensional case can be thought of

as a staircase type function across the scan line or “stripes” down the flight path. One card

then can provide 256 increments or stripes for correcting eight data channels. Furthermore,

the 4-bit word provides the a-bit increment for both A and B functions. It takes two cards to

provide the increment values for all 16 channels. There is provision in the Preprocessor

chassis for 16 Delta RAM cards: up to eight cards to provide the active increment values,

and up to 8 cards that are available to have updated values read into them. The updated cards

can then be switched to the active state, thereby making the other eight cards available for up-

dating. The two sets of cards are termed x and y sets respectively,and either can be used in

the one-dimensional case. Not all eight cards need be used for this incremental update scheme.

If eight or fewer data channels are used for input to the preprocessor only four cards are

needed per set since one card contains eight RAMS; since each card contains 256 increments

the maximum number of increments is 1024. If fewer than 1024 increments are needed then

the number of cards may be less. . For example, if eight or fewer channels and 512 increments

are used, then only two cards per set are needed. The system as presently constructed has

four Delta RAM cards. The integrated circuits used are 74S206 l-bit X 256-words with three-

state outputs. The outputs of all x cards and all y cards are bussed together to feed the update

value to the increment card. There are no diagnostic outputs on these cards.

Delta RAM Control Card

The Delta RAM control card has two major functions. The first function is to store the

initial values A0 and B. for both the active and updated function. One set of RAMS provides

the initial value to the increment card when an end of line is received, thereby conditioning

the angle correction function to be ready at the start of the next line. A selector switch pro-

vides the proper output of the ARAMs designated as active. The second major function is to

select the proper ARAM card to put the correct increment value on the output bus. Since there

are eight RAMS per card and up to 16 cards, selection circuitry for one of 128 is provided for.

The circuitry disables the select for the RAMsbeing updated, and steers the decoded address

to the 64 active RAMS.

66

Increment Card

Basically,,the increment card performs the addition of the current value of the function

to the increment and stores this updated value as the current function. Because of the pipe-

line nature of the MIDAS system where it takes 16 clock pulses to enter a pixel, 16 values of

the current function must be stored. This is done in two la-bit by 16-word RAMS. The output

of one of the RAMS is selected through a switch as the current value of the angle correction

function. This output is also fed to a switch, the use of which will be explained shortly, that

normally passes the current value of the function on to the input of an adder. The other input

to the adder is the increment value originating from the Delta RAM cards. Since the increment

value consists of two bits, it can take on a value -2, -1, 0, +l. When the command to update

is given (not necessarily every pixel) the output of the current value is added to the increment

value,and the result stored in the other RAM on a 16-channel basis. Repeated values will occur

if there are fewer than 16 ChaMdS of incoming data. When this RAM is loaded it becomes the

angle correction value for the next pixel. The switch at the input to adder has the current

value RAM as one input and the initial value as the other. At the end of the scan line this

switch feeds the initial value to the adder, the other adder input being zero. The initial value

drops through the adder and is loaded into the RAM. After this operation is completed (about

10 ,usec) the angle correction circuitry is primed for another scan line. This card has two

identical sets of the circuitry described above, one to provide the additive angle correction

value A($), the other to provide the multiplicative angle correction value B(9).

Add Card

The add card performs the addition of the input data with the current value of the angle

correction function A($) which is provided by the increment card. This card has two other

functions: First, the diagnostic bus terminates on this card. A 74174 latch stores the value

on the diagnostic bus and feeds it to the computer. There are three diagnostic input ports on

this card: (1) the input data, (2) the angle correction value A(#), and (3) the output of the adder.

Second, the overflow bits are brought in and put into a shift register at the appropriate place.

Thus, when a data value appears at the output of the preprocessor, the output bit of the shift

register indicates if this is valid data. Both the data values and the overflew bits are fed to

the classifier.

Multiply Card

The multiply card performs a lo-bit by lo-bit multiply of the output from the add card

and the multiplicative angle correction value B(9) from the increment card. There are two

diagnostic ports: B(@) and the output of the multiplier. Three high-order bits of the multiplier

are tested for overflow and an overflow bit is generated if the multiplier output is too large.

Delta RAM Load Card

The Delta RAM load card is basically a switching and selection circuit to load the pelta

RAMS. The loading takes place via a DMA DR-1lB interface shared with the Inkjet Plotter

67

Control Cards. The loading of a constant into the Delta RAMS from the computer is a two word

transfer; the first word is a control word containing the Delta RAM load’code (4-bits) and 12

bits of RAM address. These 12 bits are stored in a register. The second word contains the

constant to be loaded into the location addressed by the 12 bits of the stored address. The

RAM load pulse is steered to the proper RAM by decoding the four high-order bits of the 12

while the remaining eight bits serve as the input to all the RAMS’ address lines. While one

set of RAMS are being loaded the other set is being used to provide the increment values for

function update. The address lines of these active RAMS are not under computer control, but

have been switched to the output of a counter. This counter increases by one every n pixels

where n has been loaded into a RAM and has the range 1 5 n 5 63. Whenever the count increases

by one, the active Delta RAMS supply a new increment value that is immediately used to update

the angle correction functions as explained in the Delta RAM control card section. There are

no diagnostic outputs from this card.

Linear Combination Card

The linear combination card is very similar to the matrix multiplier card in the classifier

section of the pipeline. The multiplier is a 6-bit by la-bit multiplier. The linear coefficient

values are the 6-bit 2’s complement numbers into the multiplier. The scaling and overflow

bits tested on this card can be seen in Figure 19. There are two diagnostics on this card, one

to read back the coefficients stored in the RAMS, and the other to provide the card output.

There are sixteen of these cards, made identically, Eight of the cards have their outputs

bussed together to form the numerator, and the remaining eight are bussed to form the denom-

inator for the succeeding ratioing section. Any card can be accessed at any of the 16 clock

times since the resultant summation is stored in a three-state holding register for the entire

time a new summation is being formed. The card selection is accomplished by decoding values

stored in a RAM which is addressed sequentially by the clock. At this point in the pipeline the

number of data ChaMels is reduced to a maximum of eight.

Linear Combination Control Card

The linear combination control card contains the RAM and selection circuitry for selecting

which LC cards will provide the numerator and denominator inputs to the ratioing section of

the preprocessor. III addition it contains a la-bit by Is-word RAM to provide up to 16 dif-

ferent constants to the denominator bus. Selecting this RAM as data on the denominator bus

substitutes a constant divisor instead of the ratioing of data channels. The output of this RAM

can be intermixed with the LC denominators. There are two diagnostic ports on this card,

one to read the denominator bus, and the other to read the contents of the linear combination

card selection RAM. A large portion of the diagnostic bus output selection is decoded on this

card with the control being fed to the various cards in the Preprocessor.

Command Card

The command card receives commands from the computer via a DR-1lBDMA. This DMA

device is a separate DR-1lB from that used for Delta RAM load; it is also used to transmit

68

i -
-

commands to the classifier section. The main purpose is to load the RAMS in the Prepro-

cessor other than the Delta RAMS. This loading is done in a similar fashion to the Delta

RAM load card described earlier. To load a RAM requires a two word computer transfer;

the first, which contains the’address is stored, while the second word, containing the data of

the RAM to be loaded, is transferred. The diagnostic select code is also stored on this card

and passed on to the linear combination control card. This was done because the fanout for

RAM load selection and the fanout for Diagnostic selection required more pins than were

available. The clock lines from the classifier are brought in and buffered for distribution to

the Preprocessor cards. There are no diagnostic ports on this card.

2.5.3 THE PIPELINE DIVIDER

The MIDAS Preprocessor requires a division unit for the enhancement or normalization

of incoming data vectors. The following describes both the process of selecting a suitable de-

sign and the actual implementation. The implementation is discussed both from the standpoint

of the arithmetic theory of the division algorithm and of the hardware realization.

Specification

Some of the design specifications for the divider include

(1) a la-bit dividend(2’s complement)

(2) a la-bit divisor (2’s complement)

(3) a O-bit quotient (2’s complement)

(4) the quotient should be correct for arbitrary signs of both the dividendand divisor

(5) a 6-bit scalar (2’s complement) which adjusts the quotient by shifting it right or left

(6) a l-bit division overflow

(7) compatibility with the timing and electrical characteristics of the rest of the processor

Design Alternatives and Selection Criterion

It was immediately decided that the 300-ns clock period would require the division process

to be subdivided and pipelined. The design questions which immediately arose were

(1) Which algorithm should be used for the division ?

(2) Which chips should be selected to implement the division?

(3) How can the division process best be subdivided compatible with the 300-ns clock?

These questions cannot be treated sequentially. Rather, they interrelate to form one complex

design problem. For example, the availability of chips strongly influences the selection of

the algorithm.

The selection criterion was basically to minimize the cost of implementation. However,

this did not imply minimizing chip cost. The cost of chips is a relatively small contribution

to the overall design cost of the divider. It was decided that a better me&sure of cost was the

number of cards required to implement the divider. Since the physical placement of chips on a

card had already been standardized, the following were considered the major design objectives.

69

(1) Minimize the total number of chips where 24-pin chips are weighted equal to 2 l/2

16-pin chips.

(2) Keep the design simple to minimize the number of errors and debugging cost

Three division algorithms were considered with fespect to the criterion described above.

Binary Restoring Division

Restoring division is the binary equivalent of decimal division as taught in elementary

school. Normally the absolute value is taken of both input operands and their signs are used

to give the quotient its correct sign. Thuqin the following discussion the dividend (numerator)

and divisor (denominator) are both assumed positive. The quotient digits are selected from 0

or 1; thus only positive quantities can be represented. The partial.remainder must remain

positive at all times if the quotient is to be representable with digits of positive magnitude,

The dividend (numerator) becomes the first partial remainder. Each division step, which

generates one quotient bit, proceeds as follows. (1) The divisor (denominator) is subtracted

from the partial remainder. (2) If the result is positive, it is shifted left one bit to form the

new partial remainder; the quotient bit is 1. (3) If the result of the subtraction is negative,

the old partial remainder is shifted left one bit to form the new partial remainder, and the

quotient bit is 0. Some of the advantages and disadvantages are listed below.

(1) The signs of the input operands must be handled by separate logic.

(2) The quotient is generated in a 2’s complement form.

(3) The scheme is simple in concept.

(4) The weighted chip count was the highest of three approaches.

Binary Non-restoring Division

In non-restoring division, while the sign of the dividend is arbitrary, the sign of the divisor

must be positive. The quotient digits are selected from {l,i} where i indicates a negative 1.

Since the quotient representation allows negative quotients, the restriction that the partial re-

mainder remain positive is now removed. The dividend again becomes the first partial re-

mainder. Each division step computes one quotient bit and proceeds as follows. (1) The sign

of the partial remainder is used to determine the quotient digit. A positive partial remainder

generates a 1 while a negative partial remainder generates a 7. (2) The divisor is multiplied

(an adder/subtracter is used) by the quotient digit and subtracted from the partial remainder.

(3) The result is shifted left one bit to become the new partial remainder. Some of the ad-

vantages and disadvantages of the non-restoring scheme are

(1) only the sign of the divisor need by positive

(2) the quotient may be converted to 2’s complement trivially

(3) the weighted chip count was significantly lower than that for restoring division

(4) chips were available to implement the division as a very regular array of adder/

subtractors

70

Radix 4, Redundant Division

In the radix 4 scheme, the quotient digits are selected from {Z,l,O,i,a. Each quotient

digit represents a-bits of result. Since there are five members in the quotient digit set, the

representation is somewhat redundant. This allows the determination of the quotient digits

from truncated versions (approximations) of the partial remainder and divisor. The scheme

automatically takes care of input operands of arbitrary sign.

A division step proceeds as follows. (1) Some high-order bits of the partial remainder

and divisor are used to generate the next quotient digit by table look-up (a ROM is employed).

(2) The divisor is multiplied by the selected quotient digit (requiring an adder/subtracter and

a l-bit shifter) and subtracted from the partial remainder. (3) The result is shifted left 2 bits

to form the.new partial remainder. Some advantages and disadvantages of this scheme are

listed below.

(1) The signs of the input operands are unrestricted

(2) The scheme for conversion of the quotient to 2’s complement is non-trivial:

(3) The weighted chip count was about equal to that for non-restoring division.

(4) This scheme is significantly more complex conceptually than non-restoring division.

(5) This scheme requires the burning of ROMs.

Selection

Based on our design criterion, non-restoring binary division was selected for implemen-

tation. A major factor contributing to this selection was the availability of the Fairchild 9340

adder/subtracters with built-in carry lookahead. This chip is ideally suited for implementing

the division array.

Implementation

The divider was constructed on five cards, each containing one step of the five-step divide

pipeline (see Figure 33). Thus, in each of the five cards, data which was latched on the previous

card flows through combinatorial logic and is then latched on the current card. All latches are

tied to a common clock. The first divide card is the pre-normalization card. The second,

third, and fourth are identical divide cards, each of which produces four quotient bits. The

fifth card is a post-normalization card.

Pre-normalization

There are three inputs to the pre-normalization card. The inputs are all 2’s complement

numbers as follows:

(1) A la-bit dividend

(2) A la-bit divisor

(3) A 6-bit scalar.

While the dividend and divisor are held on inputs to the .pre-normalization card ‘for one clock

period, the scalar value is read from a 16-word RAM (see Figure 34) on the pre-normalization

card, capable of storing one scalar for each of 16 distinct Preprocessor clock cycles’.

71

Divisor In

PRE -NORMALIZATION
Exponent SGN OVF

Divisor Out Dividend Out out out out

Extend

rl2 Sign Bit b,,

Divisor In

13 1

Partial Remainder In Q U ot$ii In ---

DIVIDE

Divisor Out Partial Remainder Out Quotient Out
I I I

--12

\
Divisor In

LSBt”
--13

Partial Remainder In Quotient In

DIVIDE

Divisor Out
I

Partial Remainder Out Quotient Out
I I -

12 12
LSB t 4 Quotient Bits - .

Divisor In

13

Partial Remainder In

+8 Least
Significant

Quotient In

I DIVIDE
I

Divisor Out Partial Remainder Out Quotient Out
1 I

12-- 1 I I I
Most Significant Partial 11 1
Remainder Bit Becomes
Least Significant Quotient Bit 2

12 I I .
13 6 I

I t ‘1

Quotient In Exponent In Sign
In

t

POST-NORMALIZATION

Q,uotient Out

To Classifier

FIGURE 33. CARD INTERCONNECTIONS IN THE PREPROCESSOR RATIOING SECTION

72

1 Dividend In

12

1 Divide: Latch1

To Dibide #l

I Divisor In I I

+y
MSB a1ways O 12

I

I
I

Priority Encoder

E

--12
--1 --3 --y

O/8 Control

I Shift’rk
O-7 Control

I <,

8-Bit Adder

6

3
4

4
t 8

To Divide #l

To preserve compatibility with
engineering drawings, the MSB appears
on the right. This drawing is functional;
signals shown in true form here may be
in complemented form on the engineering
drawings.

h 3
-1

i
7 .h
-1

L 7
-1
T
7 h

To Post-Noi-malization To Post-
Normalization FIGURE 34. PRE -NORMALIZATION

73

The inputs are to be interpreted as follows: The nine bit quotient to be computed is

s.sssqqsss = Ill-in. nmmnnmm/ddd.ddddddddd X 2ssssss

where q represents a quotient bit, n represents a dividend bit, d represents a divisor bit, and

s represents a scalar bit. The binary points are as indicated. Thus, the scalar adjusts the

magnitude of the quotient by shifting it right or left. Note that the scalar may take on a negative

value.

One can see, in the block drawing of the pre-normalization card (Figure 34), that the

dividend is merely latched on the card and passed onto the first divide card (Figure 33). The

divide array handles any dividend input with no overflow. The dividend is latched on the pre-

normalization card to keep the dividend in step with the divisor. On the other hand, the divisor

must be normalized before entering the divide array to prevent overflow within the array. The

normalization process consists of taking the absolute value of the divisor and shifting left until

the bit immediately to the right of the sign bit is a 1. The correct quotient value is maintained

by adding to the scalar value, the number of places shifted.

In Figure 34, one can see that the absolute value of the divisor is taken at the input of the

pre-normalization card. This is done by wiring 3 Fairchild 9340’s as a la-bit adder/subtracter

and using the complemented sign of the input to control the add/subtract function. The output

of this absolute value circuit is positive (sign bit = 0) except for the case where the divisor

was the largest negative number (100.000000000). This divisor has no absolute value and gen-

erates an overflow during pre-normalization. The sign of the divisor is saved and latched four

times on the pre-normalization card before being’passed to the post-normalization card (Fig-

ure 33). The four latches keep the sign in step with the quotient, which is latched on three

divide cards before entering post-normalization.

The next step in pre-normalization is to count the number of high-order zeros (excluding

sign bit) of the positive divisor. For example, if the absolute value of the divisor looks like

OOO.lXXXXXXXX (X indicates either 1 or 0) then, the number of high order zero’s computed

is 2. This operation is done by 2 Fairchild 9318 priority encoder chips. The result appears

as a $-bit binary quantity. A zero valued divisor cannot be scaled and causes another overflow

condition during pre-normalization.

The 4-bit quantity discussed above is used to control a shift network which shifts the

divisor left O-15 places. This is more than sufficient to normalize any non-zero divisor.

The shift process is done in two parts. In the first part, the most significant bit of the 4-bit

shift count is used to control three Signetics 8233 a-input, 4-bit digital multiplexers. These

multiplexers are wired to shift 0 or 8 positions with zero’s injected in the low order end. The

second part of the shift process is carried out by three Signetics 8243 scalar chips which are

wired as a la-bit, O-7 position left shifter. The low order three bits of the 4-bit shift count

control the amount of shift. This normalized divisor is now latched for use on the divide cards.

74

The pre-normalization card also performs an exponent computation which corrects for

any shift done during divisor normalization. Let C be the number of places the divisor is left-

shifted during pre-normalization. Let S be the scalar as read from the RAM. In order to

maintain the correct quotient value, we can see

Q = (N/D) x 2’ = (N/(DXZ~)) x 2(s+C)

Thus, a 6-bit exponent E = S + C is computed and used to scale the quotient. This exponent

computation is done with two Texas Instrument SN74283 4-bit adders. Note that the carry

into this adder is set so as to actually compute E = S + C + 1. We shall explain this +l term

later.

Division

The purpose of the pre-normalization card is to eliminate the possibility of overflow during

the non-restoring division by properly scaling the inputs. Clearly, the largest quotient should

be generated when the largest dividendand smallest divisor are used for inputs. Pre-normali-

zation guarantees that the divisor must be greater than or equal to 010.000 000 000. .The larg-

est dividend is equal to 011.111 111 111 positive or 100.000 000 000 negative. Thus, the largest

quotients which we would like to represent are: (4-2-g)/2 = 2-2 -10 and, -4/2 = -2.

The dividend (pre-normalization output) becomes the first partial remainder with no shift

(see Figure 33). Thus, in the intermediate non-restoring quotient (the quotient as generated

by the divide array), the high order digit has weight 1. The intermediate quotient looks like:

r.rrr rrr rrr rrr where r E{ l,i>. The range of representable quotients is from 1.111 111 111

111 = 2-2-12
----__-------

to 1.1 1 1 1 1 1 1 1 1 1 1 1 = -2+2-12. Thus, the largest positive quotient (com-

puted above) is within the range while, the largest negative quotient is closely approximated.

We hope that this will satisfy the reader that the division array does not overflow.

The division array is constructed on three identical cards each of which computes four

quotient bits. The thirteenth quotient bit is taken from the sign bit of the last partial remainder.

Each non-restoring divide step is performed as follows (see Figure 35). Three Fairchild 9340

4-bit carry lookahead adder/subtracters are interconnected to form a 12-bit unit. Four rows

of adder/subtracters are used to compute the four quotient bits on a divide card. Consider the

output (a partial remainder) of one row of adder/subtracters. The sign bit of the partial re-

mainder is complemented to form a quotient digit. Thus, a negative partial remainder gener-

ates a 0 (7) quotient digit while a positive partial remainder generates a 1. The partial re-

mainder is shifted left one position (0 is injected into the I.SB) before entering the next row of

adder/subtracters. The quotient digit times the divisor is then subtracted from this shifted

partial remainder to form the new partial remainder. This is done by wiring the sign bit of

the shifted partial remainder to the addjsubtract control line of the next adder/subtracter row.

Between divide cards, the shift of the partial remainder is wired on the back plane which

permits constructing 3 identical divide cards. The dividend becomes the first partial remainder

75

I PARTIAL REMAINDER IN I

12 -12

I
I

--1

ADD/SUBTRACT

ADD/SUBTRACT

12 LSB
a, 1

I '

-12

ADD/SUBTRACT

LATCH DIVISOR 12

LATCH PARTIAL REMAINDER 1 LATCH QUCk--1

FIGURE 35. NON-RESTOriING DIVIDE

‘76

with no shift, the sign bit is extended one position (see Figure 33). The partial remainder

shift is wired between the first and second, and second and third divide cards.

Each divide card contains a la-bit quotient latch. Between divide cards, a four bit left

quotient shift is wired. The four quotient bits computed on a card are shifted into the low

order positions of the la-bit latch. Thus, at the third divide card, a full la-bit quotient ap-

pears in the quotient latch. Again we mention that the 13th quotient bit is computed from the

sign of the last partial remainder.

Post-normalization

Post-normalization begins with the conversion of the 13-bit non-restoring quotient to a

la-bit binary quantity with separate sign bit. Consider the non-restoring quotient R =

r.rrrrrrrrrrrr where r e{l,i). Let A represent the weighted sum of all positive digits in the

non-restoring quotient. Let B represent the weighted sum of the absolute value of the negative

digits in the non-restoring quotient. For example, if R = 1.1~11~11111 then A = 1.100110011111

and B = 0.011001100000. With these definitions of A and B, we can write the following equations:

R=A-B

2 - z-l2 = A + B

The second equation holds since the sum of the weight absolute value of all quotient digits is

always 1.111111111111 = 2 - 2-12. From the equations above, we write:

R+2-2 -12 = 2A

R=2A-2+2 -12

R/2=A-1+2 -13

The addition of 2 -13 affects the 14th dig&t position and can be ignored. We have:

R/2=A-1

Since, i’s in the non-restoring quotient are represented by O’s, A is the non-restoring quotient

treated as a binary number. To compute R/2, all we have to do is add -1 = 1.000000000000 to

A. This corresponds to complementing the sign bit (there can not be any overflow).

Note that we have computed R/2 above. In order to scale the quotient up by a factor of 2,

a carry is injected into the exponent computation on the pre-normalization card.

The post-normalization card (see Figure 36) first inverts the sign bit for reasons described

above. Then the absolute value is taken of the 13-bit 2’s complement quotient. Since the sign

of the result is guaranteed to be zero, this process can be carried out by a la-bit adder/sub-

tractor group. Overflow occurs whenever the absolute value is taken of the most negative

quotient. The quotient sign is saved for later use.

77

--11 ,, --1

I

T12

ABSOLUTE VALUE

SHIFT LEFT

RIGHT/LEFT
O-7

!
1

v
COUT \

ADD/SUBTRACT

--a
1 MSB

I
--9

EXPONENT IN

SGN

SIGNIFICANT
OF 6

1

c5 LATCH
OVF

FIGURE 36. POST-NCRMALIZATION

78

The final step of post-normalization is to compute the correct quotient from the non-

restoring quotient, the exponent, the sign of the divisor, and the sign of the non-restoring quo-

tient. The magnitude of the final quotient is computed by the scaling operation:

Q=Rx 2E

This is then either complemented or not, according to its proper sign.

The exponent E is a g-bit 2’s complement number. An 8-bit adder/subtracter is used to

convert E to sign and magnitude form. The sign will be used to control the direction of a

shift while the magnitude will control the shift distance.

We are computing a g-bit quotient. However, the sign is carried separately so there are

only 8-quotient bits. These eight-magnitude bits are scaled by the exponent as follows: Again,

the shifting is done in two stages. The first stage shifts 0 or 8 positions left. A shift right of

eight (or more) positions leaves a zero value for the 8-bit quotient magnitude. Thus, the right

shift is done by disabling the shifter. The left shift is done by five a-input 4-bit digital multi-

plexers (SN75157). Two of the multiplexers are used to compute the eight bits shifted out of

the shifter, These eight bits are or’ed into the overflow. The other three multiplexers shift

the 12 quotient bits 0 or 8 places left.

The second stage of the shifter consists of three 8243 scalar chips wired to shift 12 input

bits O-7 places right or left onto an 8-bit output bus. One more scalar is used to compute the

bits shifted out on a left shift. These are or’ed into the overflow. These scalars are con-

trolled by the sign of the exponent (right/left) and the three low-order bits of the exponent

magnitude (O-7). The 8-bit output of this shifter has the properly scaled 8-bit quotient magni-

tude (in complemented form).

The sign of the divisor and the sign of the non-restoring quotient are now exclusively

or’ed to compute the final quotient sign. The 8-bit quotient magnitude along with an implicit

leading 0 sign bit is added to or subtracted from a g-bit zero according to the final quotient

sign. This g-bit operation is carried out by two 9340 adder/subtracters and an exclusive or

which adds the quotient sign to the carry out of the adder/subtracters. Note that the quotient

magnitude is inverted (it was in complemented form) in this same step. There is no possi-

bility of overflow and, the result is the desired g-bit 2’s complement quotient.

Conditions for Division Overflow

The conditions which lead to division overflow can be listed as follows.

(1) If the divisor is the largest negative number (100.000000000), it cannot be comple-

mented to form the absolute value-

(2) A zero-valued divisor cannot be properly normalized.

(3) If the non-restoring quotient is the largest negative number (i.iiiiiiiiiiii), over-

flow occurs during the process of converting to 2’s complement and taking the ab-

79

solute value. In order for this condition to occur, the dividendmust be the largest

negative number (1.00000000000) while the normalized divisor must be 010.000000000.

(4) If the computed exponent has absolute value greater than or equal to 16, the post-

normalization shift network cannot properly scale the quotient.

(5) Any non-zero high-order quotient bits which are left shifted out of the quotient during

the post-normalization scaling operation will result in an incorrect quotient value.

Simulation

The entire division process was simulated in detail in APL. The division algorithm is

somewhat complex and difficult for the design engineer to grasp as a whole. The simulation

is an effective tool for establishing that the result is indeed the quotient of the dividend and

divisor inputs. Thus, the simulation establishes some confidence in the design. In addition,

the simulator is useful in testing various overflow conditions and sign processing.

A number of errors were uncovered using the simulation long before the wirewrap was

done. Hence, it is valuable in reducing the problems encountered during the logic debugging

phase of the design process. A listing of the APL simulator and a trace of a sample simula-

tion run are included in the Appendix.

2.6 RAMTEK COLOR DISPLAY SYSTEM

The color display system provides a means of displaying imagery on a three-color CRT.

This imagery may be either unprocessed or processed data with which the operator may inter-

act to designate areas for analysis or processing.

The display uses MOS storage for screen refresh and allows display of 512 by 512 elements

on the screen at 5 bits (plus an overlay bit) per scene element. Each 5-bit element may be

translated into three 4-bit signals by table-look-up memories. The overlay channel is em-

ployed to designate points as a cursor or to indicate boundary locations in designating fields

for analysis.

A second black and white CRT display is employed to present the menus for control of the

system. This CRT normally displays the overlay, or sixth, bit of the display element.

Control is provided by an alphanumeric keyboard and track ball which controls the cursor

location. I

Interfacing to the PDP-11/45 is provided by a standard DR-11B connected to the display

and trackball, and a DL-11C connected to the keyboard.

2.7 INKJET PRINTER

The inkjet printer subsystem consists of two units, the printer and its control interface

to the PDP-11/45 Unibus.

80

r -
2.7.1 PRINTER

The inkjet printer is the device chosen for fast, hard-copy, color output for the MIDAS

system. This printer allows the user to obtain a pictorial copy of the data, unprocessed or

processed, in about five minutes with a picture element size of 0.2 mm X 0.2 mm (0.008 X

0.008in.) for a picture size up to 11 l/2 X 11 1/2in. (up to 1430 X 1430 elements per sheet).

Each picture element is printed by *three separate ink-jets using three color-negative primary

colors (magenta, cyan and yellow). Each primary color may be controlled in its density over

approximately 40 quanta at each element printed, affording a color range for each element of

approximately 403 (64,000) separate colors.

The printer operates at a rate of approximately 50 I.rsec per picture element, printing a

line in 66 msec (15 rev/set) on paper held on a rotating drum. A carriage holding the three

jets is moved horizontally along the drum by a helical lead screw driven by a stepper motor.

The lead screw pitch is 2 mm and advances a minimum increment of 0.01 mm per motor step.

Normal operation of 0.2 mm line spacing requires 20 steps per revolution and may be given

continuously during printing or between lines.

The ink jets are controlled during printing by electrostatic gating of the inkjet using

pulse duration modulation. Each jet produces a stream of droplets at a rate of approximately

lo6 drops per second and has a scattering distribution such that a pulse of up to 50 drops

spreads over a spot of about 0.2 X 0.2 mm area. Control of element density is thus obtainable

by gating a packet of droplets onto the drum within the 50 psec pixel interval. Droplets are

gated by placing a charge, either negative or zero, on each droplet by applying a voltage to the

nozzle assembly. The stream is directed toward the drum through a pair of charged deflection

plates. It passes through an aperture to the drum when the droplets are uncharged or is de-

flected into a catcher when the droplets are charged.

2.7.2 CONTROL INTERFACE

The Control Interface which connects the printer to the PDP-11/45 Unibus consists of two

parts: (1) a specially designed section for electro-mechanical control of the printer and (2) a

DEC direct memory access, DR-11B custom user interface for transferring digital control

and data signals to the special section. The DR-11Bwas chosen because rapid transfer of data

is required; prior system use and software support made implementation straightforward.

The special purpose control section is shown in block diagram form in Figure 37. There

are ten signals passed between the printer and this unit. These are: Power On, Trigger, Left

Margin, Right Margin, Drum Motor On, Stepper Motor Step, Stepper Motor Direction, Ink

Color 1 On, Ink Color 2 On, and Ink Color 3 On. The first four signals originate at the printer

while the other six are control signals from the computer interface. Three of the printer sig-

nals are indicators: power switch on, print head at right or left margin. The trigger signal

indicates that the drum is in the proper position to start the printing of a line. The drum

81

- Phase
Locked r

60 HZ-W Loop
Clock

t
450 Hz

Print

3 Comparators . - Ink Color n On

Clock

t 1

E.O.L.

450 HzI I r Power On

Right and Left Margins E
tt

Print
Pixel Interval

Pixel
Count

I
Cycle Request
End of Line (E.O.L.)

Step Count I I Register
12 bits

Motor

FIGURE 37. BLOCK DIAGRAM OF INKJET PRINTER CONTROL INTERFACE

II -- .-

motor can be turned on or off under computer control by loading the appropriate value into the

drum motor register shown in Figure 37. The stepper motor moves one step every time it is

pulsed. The maximum stepping rate is obtained by driving the motor with a 450-Hz square

wave. The direction of rotation is controlled by the direction signal.

The special purpose interface has two major parts as shown in Figure 37. One part con-

trols the turning on and off of the three ink jets, the other controls the stepper motor. The

control of the ink jets is accomplished by turning them on for a period of n/128 X 50 Psec,

where the value “n” is under computer control. Within every 50 Psec interval the interface

requests two 16-bit words from the computer and loads them into a first rank register. At.

the beginning of the next 50 psec pixel-print cycle three 6-bit “color words” are loaded into

the second rank registers from these first two words. The outputs of these registers are fed

to the address lines of three 7-bit RAMS. The output of each RAM feeds one side of a digital

comparator while the other side is fed by a counter. The counter starts at zero when these

words are loaded and counts up to 128. As long as the counter is less than the binary value

from the RAM the particular color prints until the value of “n” is reached. The cycle repeats

every 50 &sec and ends when the computer indicates all data for that line has been transferred

by turning off the ready line of the DR-11B. The cycle is primed again when the computer sets

up another DMA transfer and issues a “GO” signal. The actual printing and data requests

start after this “GO” and a “TRIGGER” signal from the printer is received at the interface.

The use of the RAMS as a color lock-up table permits changing colors easily and rapidly with-

out changing the data values.

The stepper motor control has four different modes of operation: (1) slew right or left;

(2) make a large number of steps while not in the print mode; (3) step at the end of each line

of print; and (4) step while printing. The slew mode is achieved by setting a hit in the step

type register which permits a 450-Hz signal to be applied to the stepper motor. When a mar-

gin is reached the margin indicator signal is fed back to the computer which senses the end

of the slewing action. The large-number-of-steps mode is used to position the recording head.

A la-bit register is loaded with some binary number. The interface will then send that num-

ber of pulses to the stepper motor. The maximum number of 4096 pulses moves the recording

head about 40 mm (1.5 in.).

The step-at-the-end-of-line mode requires that a “GO-Trigger-End-of-Line sequence

has occurred. At that time the interface sends “n” pulses to the stepper motor, where n is the

number loaded in the la-bit register. Usually this number is 20, to provide printing of con-

tiguous lines. If the stepper motor is stepping and the interface receives the Go-Trigger

combination to start printing, the interface will not print until the stepping is completed and

another trigger pulse is received.

The step-while-printing mode causes the stepper motor to make one step every n X 5n

,usec. This will produce a skewed picture. The number ‘In” is loaded into the previously

83

1.11 II_ I. II I .I I. 1111-11-1 . ..m...-..m- ..I a-.. ..- -. . ,- . ..--._ --..---_-

mentioned 12-bit register, Usually this number is about 50 to produce contiguous lines; it

cannot be less than about 25 because the pulse rate would be too high for the stepper motor

to follow. The interface will halt stepping in this mode if a Go-Trigger-Trigger combination

is detected because this would put gaps in the picture.

2.8 GENERAL-PURPOSE COMPONENTS

The general-purpose components now used in the system are shown in the block diagram

of Figure 38. The basic computer system is configured with the DEC PDP-11/45 CPU with

core, disc, and tape storage. Program development is normally done with standard units, a

line printer, an alphanumeric CRT and a keyboard/printer.

MIDAS operation uses the RAMTEK components, the mass disc and the inkjet color printer

for image display, storage and printing, respectively. Data input may be provided by analog

tape,high-density digital (HDT) tape or computer-compatible tape (CCT) in 7- or g-track for-

mats. Classification and preprocessing are done in the special purpose pipelines, which are

treated as Unibus -compatible peripherals.

All of the above components are interfaced to the standard DEC Unibus, principally by

DMA (DR-1lB) devices or single word transfer (DR-11C) devices which are not shown, for the

sake of simplicity.

The general-purpose system is actually a fairly powerful “mid?‘-computer, employing the

variety of standard hardware and software tools available in the DEC-11 system.

84

I DECwriter
LA-30 I-

Alphanumeric
CRT VT-05 I-

Printer Plotter
(VERSATEC) t-

Color Display
(RAMTEK)

I (RAMTEK) I

r I

Nigh-Density I Tape
Data Path
Selector

Preprocessor
Pipeline

Classifier
Pipeline

I===-

Diagnostic Bus

CI

Disc
RK-05
1.2 M Words

Mass Disc El 58 M Byte
(29 X 2 Dual)
Diva

W

Tape System:
Controller
2 - 800 BPI,

g-Track
1 - 200, 556, 800 BP1

7-Track

Bidirectional DEC

U;;ibush

Unidirectional

PipGth

FIGURE 38. BLOCK DIAGRAM OF GENERAL-PURPOSE COMPONENTS

MIDAS SOFTWARE

3.1 INTRODUCTION

3.1.1 DIRECTION AND -PURPOSE OF SOFTWARE

The software requirement on the MIDAS project consisted of the following main tasks.

(1) To control the high-speed flow of data through various pieces of hardware constructed dur-

ing the project, specifically input data transfers to and output data transfers from the MIDAS

Preprocessor/Classifier hardware. (2) To maintain the large information system necessary

for multispectral data processing and analysis, interfacing this information data-base to the

hardware data-transfer control features. (3) To develop applications programs, in the various

multispectral data processing areas, which are highly user-interactive and which, as a result,

reduce the total number of man-hours necessary to complete a data analysis task. In brief,

these were the major responsibilities of the software portions of the Phase II MIDAS project.

To expand on these general requirements, it is necessary to reiterate the hardware con-

structs which set MIDAS apart from other multispectral data analysis systems. Of course,

the major hardware innovation is the Preprocessor/Classifier pipeline which performs the

high-speed data manipulation functions of (1) multiplicative/additive scan line correction as a

function of scan angle, (2) linear combinations of channels, (3) ratios of channels or of linear

combinations of channels, and (4) calculation of classification type, using -the multivariate quad-

ratic decision rule. The speed of this piece of hardware (approximately 2 X lo5 decision cal-

culations per second) changes the emphasis of multispectral processing from batch-oriented’

data processing, where job set-up time is less than or about the same as the data-processing

or classification time, to a situation where the emphasis must be on the man/machine inter-

action time, i.e., job set-up time. In the MIDAS system, the data-processing time has been

drastically reduced by a factor of 1’00 to 1000, depending on the speed of the data source, com-

pared to general-purpose computer software classification programs. In order to make use

of this time/cost reduction, the man/machine interaction time must be reduced.

The method chosen to decrease the man/machine interaction time and increase the overall

data processing rate (and thus the system’s cost effectiveness and cumulative data throughput

rate) has two main components. First, it provides the user with as much information as possi-

ble concerning various parameters of the processing task, and thus makes more effective use

of the human’s intuitive decision-making capabilities (which are still an integral part of most

multispectral data analysis tasks). Second, it decreases the average access time to randomly-

selected portions of multispectral data in order to decrease the time needed to perform certain

pre-classification statistical analysis functions. One of the most powerful methods of providing

information to the user is through the use of color and grayscale images of raw and processed

multispectral information. These images can be displayed on two devices in the MIDAS system:

(1) a tiolor/BW CRT display system; or (2) a color image plotter for hardcopy output. These

86

images can provide the user with the necessary visualization of the data to guide his decision-

making processes in job set-up, especially in the area of training and/or test field selection.

Additionally, by using various interactive devices attached to the display system (specifically,

an interactive trackball and a keyboard) to control the flow of processing, quicker response

times and more complete information display can be achieved, thereby reducing the job setup

time.

In order to reduce the processing time, two pieces of hardware, a 58-million-byte disk

system and a high-density digital tape (HDT) system, are incorporated into the design. The

disk system, which allows storage of large amounts of raw multispectral data and processed

results, provides a much lower access time to random portions of a data scene than does a

CCT-based system. Thus,all processing and analysis is performed using the disk database,

reducing the average data-access time to the order of milliseconds from that of CCT-based

systems with average access times ranging from hundreds of milliseconds to hundreds of sec-

onds. Use of the high-density digital tape system will provide significant increases over CCT’s

in the efficiency of loading raw data onto the disk system, and can also be used as an-input data

device capable of driving the MIDAS at its maximum data processing rate. However, there is

still a data output limitation due to the average data transfer rate possible with the bulk-storage

disk system, and the high-density tape system will have to be slowed down by at least a factor of

two to satisfy this limitation.

3.1.2 SOFTWARE OVERVIEW

In developing applications programs which perform the analysis and hardware-control

functions of the MIDAS system, it was decided that the effective limit of 24K words under the

DOS/BATCH operating system was inadequate for most of the applications. Two methods for

alleviating this virtual memory problem were investigated: (1) modification and addition to the

DEC DOS/BATCH operating system to provide a 65K-word program environment, through the

use of the PDP-11/45’s KTll-C memory management hardware option, or (2) use of the DEC

FLSXll-D multitasking operating system.

The DOS/BATCH modification and addition scheme was selected, mainly because an in-

house-developed operating environment could be more finely tailored to the needs of the MIDAS

system. However, the other major considerations were the shortcomings Lf the RSXll-D sys-

tem, in the initial planning periods of Phase II MIDAS. RSX11-D was a new DEC software prod-

uct, and as such was experiencing the initial field-test problems found in most new systems;

in addition, the high purchase price placed on the operating system with source code and auto-

matic DEC update service seemed unreasonably high for tImbudget of this project.

The modifications to the DOS/BATCH system consisted mainly of changes to the system

hardware description and the insertion of several device driver routines into the monitor to

control the various new pieces of hardware obtained in Phase II MIDAS. Additions to the sys-

tem include a set of routines to handle the virtual.addressing scheme of the KTll-C memory

87

management unit, to handle the interfacing of the user-program calls to monitor utility routines,

and to process calls to MIDOS (MIDas Operating System) utility routines via the TRAP instruc-

tion. If more core memory had been purchased, a 65K-word program operating environment

would have been possible; but with the purchase of an additional 32K word section of memory,

approximately 40K words are available for a resident application program. Program and over-

lay loading are some of the services provided by MIDOS. Additionally, the display of interactive

menus and subsequent interaction with these menus is accomplished via calls to MIDOS.

3.1.3 APPLICATION PROGRAMS

Within the MIDOS and application program system, there are presently five information

systems to be maintained and used by application functions. These are

(1) the multispectral image data system (stored on the bulk storage DIVA disk system)

(2) the field-definition information system (stored on the RKll-C system disk)

(3) the scan-line correction function information system (stored on the RKll-C system

disk)

(4) the statistical signature information system (stored ‘on the RKll-C system disk)

(5) the interactive-menu/display file system (stored on the RKll-C system disk)

The first four of these information systems are modified and accessed by all applications

programs, while the fifth is set-up off -line and can be thought of as an integral part of the pro-

gram code associated with each application. Consequently, this information system cannot be

modified by an application program; it can only be accessed for use.

The applications programs which have been developed follow to a large degree the standard

functional breakdown associated with most current multispectral data analysis systems. The

applications are broken down into the following areas: (1) IMAMAN, the multispectral data-

base control program which performs image loading and file maintenance functions; (2) DISPLA,

the data-display program which provides for color or grayscale image generation in both CRT

and hardcopy modes; (3) FLDMAN, a field-definition information system manipulation program

which allows user-definition of fields (polygonal regions within a multispectral data scene) for

use in training processes and post-classification analysis; (4) STAT, a package of statistical

routines which use the field-definition and multispectral data information to calculate signa-

tures and scan line correction functions; (5) HDWCON, a MIDAS-hardware control program,

which loads all hardware RAMS in the MIDAS,conditions it for a particular operation, such as

multivariate classification or ratioing, and creates a disk file with the results; and (6) PANALY,

a post-classification analysis program, which helps to indicate the success or accuracy of a

given classification processing task. The details of the functional capabilities and the actual

programs are given in Section 3.3.

All of these applications programs interact with the PDP-11/45 computer via the process-

control keyboard and trackball associated with .the RAMTEK CRT display system. Associated

88

r- -~ - __

with the process-control keyboard are several keys, designated super-function keys, which

suspend the operation of a current application program, to perform some global function nec-

essary for efficient system operation. The two current super-functions to be implemented in

Phase II MIDAS are the scrolling/zooming function,and the function which terminates a current

application and allows the user to select a new application function without disturbing the in-

tegrity of any of the information systems which may be in the process of modification by the

current application.

The following procedure illustrates a possible processing sequence as an example of the

MIDOS software system in -operation.

The raw multispectral data must be loaded into the bulk-

storage disk data-base. Assume that the data set to be proc-

essed is a LANDSAT- data frame stored in LANDSAT-

quarter-frame format in four files on two O-track 800 BP1

computer-compatible tapes. The user would specify the

scene associated with each quarter-frame and loading of the

data onto disk would proceed. A full-frame multispectral

data file would be created in the bulk-storage information

system, under a filename specified by the user.

The next processing step might be to display various

channels of the raw data on the CRT, looking for the best

feature-discrimination (i.e., distinction between ground-

types). A hardcopy of the color image could be produced and

taken off-line to extract line and pixel number selection for

field-definition, possibly the next logical processing step.

In order to calculate signatures based on several areas,

the boundaries of these polygonal regions must be defined by

the user. These definitions may have been decided upon off-

line through the use of available hardcopy and imagery, and

could be, punched on cards, stored on tape, and read directly

into the system. Alternately, using the cursor/trackball com-

bination in conjunction with the displayed CRT image, polygonal

fields can be drawn on the displayed image and entered into the

field-definition information data-base for use by subsequent

processing functions.

If a classification is to be performed, signatures describing

each class must be entered into the signature information sys-

tem, either from CCT (and thus calculated off-line or restored

89

from previous processing runs), or through calculation of

the signature statistics using subsets of fields previously

defined.

After a possible analysis of the ‘signatures is performed,

the user.must select the signatures and the subset of channels

of the raw multispectral data image to be used. These signa-

tures will be loaded into the classifier, and the classification

will be performed on a user-specified subset of the scene.

Output of classification results will be made to a user-speci-

fied disk file. A count of the number of pixels per class will

be produced.

After classification, analysis of the results ‘might take

one or both of the following methods: color display of the

classification file or statistical analysis of a pre-selected

subset of the classified scene. This analysis could take the

form of a matrix describing the success of the classification

calculations for each class, assuming homogeneity of a par-

ticular class within each of the test areas designated, and

also give the number of “incorrect” classifications, as well

as the overall proportions of each class in these test areas.

3.1.4 DIAGNOSTICS

Several diagnostic programs were written under MIDAS Phase II, most of which deal with

the new pieces of hardware which have been added to the system. CHECK4 is a program which

provides a probing mechanism to access all of the diagnostic ports within the MIDAS Pre-

processor/Classifier hardware. ‘CHECK8 is a diagnostic used to detect data transmission

errors through the MIDAS hybrid circuitry as well as through the Preprocessor. IJEX and

IJPTST are two diagnostic programs used to test and control the operation of the inkjet

plotter and its computer interface.

3.2 OPERATING SYSTEM

As was discussed in the system overview, an immediate requirement for the Phase II

MIDAS software effort was the extension of user-program storage from -24K words toward

65K words with a minimum of 32K words. Since no operating system available at the start of

Phase II satisfied this requirement, system software was devised which would meet this need

as well as some of the other specialized requirements of the software effort as it was speci-

fied. The major ‘,reas of effort in the system software developed were (1) memory allocation,

in conjunction a&h the hardware KTllC memory segmentation unit, (2) dynamic program

loading, (3) interface user programs with the DOS/BATCH system, especially in the areas of

90

r -. ~ -.

I/O, and (4) implementation of device drivers for non-standard hardware developed in Phase II.

Some of the considerations that were taken into account in the design and implementation of

MIDOS were: (1) keep the MIDAS components as small as possible in terms of minimum

core requirements, (2) provide the mechanism for real-time response to a user interacting

with a menu display system, and (3) provide a common environment-description area for inter-

program-segment communication.

3.2.1 DOS/BATCH

The operating system which is used for software applications to the MIDAS project is com-

posed of two major components: DOS/BATCH [VO9-29C] and the MIDOS system components.

The Digital Equipment Corporation’s DOS/BATCH Operating System VO9-29C is used, with

subsequent released correction updates, and with the addition of several device drivers. The

drivers which were written handled the following non-standard peripherals: (1) the RAMTEK

imaging display CRT system, (2) the inkjet printer and preprocessor RAM loading interface,
(3) the process-control keyboard device associated with the RAMTEK system, and (4) the

VERSATEK line printer-plotter. No modifications to this operating system have been made

to facilitate the incorporation of the MIDOS components. Both DOS and MIDOS are resident in

“kernel” virtual space of the PDP-11/45. MIDOS is responsible for the set-up and control of

the user-program which is resident in user virtual space.

3.2.2 MIDOS INITIALIZER

This is the first component of the MIDOS system which is brought into core as a standard

load module by the DOS monitor. It is possible to run MIDOS in a special system debugging

mode through console switch register settings. In a normal operation, however, this mode

would not be used. Initially, INIT loads a package which contains the modules MMSERV,

ERROR, and TRAPS. These routines are loaded separately from INIT (although they are part

of the MIDOS system) so that in the debug mode, different versions of these modules could be

loaded without confusing file manipulation prior to loading. After these three MIDOS compon-

ents have been loaded, INIT initializes all link blocks in the system common area, thus making

all device drivers resident in “kernel” virtual address space.

Then the EMT, TRAP, and KTllC interrupt vectors in low-core (kernel addresses 303,

348, and 2508 respectively) are initialized to provide transfer to the proper location within

the routines TRAPS and MMSERV. The existence of all non-resident MIDOS trap routines is

verified and their locations on disk are stored in the trap residency table. The KTllC memory

segmentation unit is then initialized by loading the “kernel,” “supervisor,” and “user” PARS

(page address registers) and PDRs (page descriptor registers). Next a TRAP 000 instruction

is issued to load the first application program. In debug mode, any user program may be

specified; in non-debug mode the program USERAP, which allows the user to select an appli-

cation program, is loaded.

91

3.2.3 MEMORY MANAGEMENT SERVICE ROUTINE (SERVE)

This MIDOS component module contains three separate routines; MMSERV, BYPASS, and

SISERV. MMSERV is the routine which services the KTllC memory segmentation unit inter-

rupts. The only interrupts which are enabled from this hardware are those which are generated

by page addressing errors, i.e., attempts to address a virtual memory which does not exist.

Since the circumstances which generate an interrupt into this routine are non-recoverable, a

fatal system error indicating the cause of the problem is issued. BYPASS is a routine which

intercepts the interrupts which are generated by the execution of an EMT or TRAP instruction

by the program executing in “user” virtual space. Since both the “kernel” space and the “user”

space have separate stacks, and since these stacks are the mechanism for passing arguments

in the EMT as TRAP calls, BYPASS is responsible for transferring information from the “user”

stack to the “kernel” stack before entry to the routine designated by the EMT or TRAP instruc-

tion. It is also responsible for the transfer of information from the “kernel” stack to the “user”

stack subsequent to execution of the called EMT or TRAP routine. SISERV is the routine

which services stack limit register violations, i.e., when the “user” or “kernel” stack falls

below the limit of memory available to the virtual address space. Again, since the circum-

stances which generate an interrupt into this routine are non-recoverable, a fatal system error

is generated.

3.2.4 ERROR HANDLER ROUTINE (ERROR)

This routine is used for all error reporting from MIDOS. It is responsible for all non-

recoverable error messages, and thus it must return the state of the machine to a condition

which coincides with the environment expected by DOS/BATCH. As such, this routine must

disable the KTllC memory segmentation unit, reset the TRAP and EMT vectors to their former

values and release all I/O link blocks and device drivers. A call is then made to the DOS/

BATCH error diagnostic package (EDP) which then issues the requested error message.

3.2.5 TRAP HANDLER ROUTINE (TRAPS)

This routine is responsible for calling the user’requested TRAP routine. Since there

are both resident and non-resident TRAP routines, TRAPS must determine if the requested

trap routine is currently available. If the routine is non-resident and not currently residing

in the trap buffer within MIDOS, it must be acquired from the disk and loaded into the trap

buffer. If the routine is resident, no loading is necessary. TRAPS sets up the kernel stack to

overlay the user stack and thus passes arguments to and from the stack routine. The current

occupant flag is set to indicate that a routine is present in the trap buffer. Control is then

passed to the trap routine.

For all non-resident traps, i.e., those trap routines which are stored in “core-image”

format on the RK-05 disk, there is a fixed naming convention which is expected by the routine

TRAPS. All non-resident trap routines are referenced by number and must have a filename

of the format “TRAP. xxx[l,G]” where xxx=trap reference number.

92

r-- -

3.2.6 TRAP ROUTINES (TRAP Xxx)

Trap 600 -Program Loader

This resident trap routine is used to call in a new segment of user-program into user-

virtual space. It is capable-of using three different types of input modules: LDA, LDI and

LDD load modules. An IDA-module is assumed to have its instruction and data program code

in a single 32K word area and,thus,in the KTllC memory segmentation unit set-up, I-space

(instruction space) and D-space (data space) are overlaid. If the module requested for loading

is not an LDA module, the LDI module is assumed to contain up to 32K words of instruction

code and an associated LDD module is assumed to contain up to 28K words of data (the remain-

ing 4K words allow access to the physical hardware address page). This loading scheme allows

a 60K word program environment. I-space and D-space in this situation ar.e not overlaid.

This trap module is composed of eight major routines: PLOADR, RCOMD, LOADM, ASSIGN,

GETHDR, GETBYT, CLEAR, and CAULK.

TRAP 000 operates as follows, After removing and saving all trap arguments from the

stack,all of user core is zeroed. The COMD (communications directory) from the requested

load module is obtained and the relevant information is saved in the system common area.

Next, dependent on the type of modules to be loaded (either LDA or LDI/LDD), the necessary

virtualpages in L.- and D-spaces are computed. LOADM is called to unpack each load module

segment found by GETHDR into the core allocated by ASSIGN.

Trap 001 -Overlay Loader

The function of TRAP 001 is to load a module anywhere in existing core without altering

the program environment of the code which has requested the overlay. This non-resident mod-

ule contains the routines OVERLAY, OLOADM, and EXIT and accesses the routines RCOMD,

CLEAR, GETBYT, and GETHDR, all of which are part of the resident TRAP 006.

The operation of TRAP 001 is as follows. The overlay module file is read and its COMD

is unpacked for relevant information. Address checking for existence is performed. If the

flag CLEAR, passed as an argument, is non-zero, the overlay buffer is zeroed. Subsequently,

the overlay module is unpacked and loaded into the overlay buffer. The return address from

the argument list is determined and control is passed to the calling program.

TRAP 064-Extended Address Bit Set-UJ

This resident trap routine is used to convert the 16-bit virtual ‘address associated with a

DOS .TRAN block into an 18-bit physical address, necessary for DMA device set-up on control.

Word 2 of the .TRAN block must contain the user-space virtual address of the DMA I/O buffer.

Upon return from this trap routine, word 2 will reflect the low-order 16-bits of the physical

address corresponding to the virtual address passed by the user. Bits 4 and 5 of word 3 of the

.TRAN block reflect bits 16 and 17 of the physical buffer address. An error return code is

made if the .TRAN block address or the virtual address specified in the block is not accessible.

93

TRAP @97--Virtual-to-Physicalnversion Routine

This resident trap routine performs the same function as TRAP 094 (i.e., conversion of a

virtual user-space address into an l&bit physical address), only this routine provides much

more detailed information about the reference memory location. Since interpretation of a

virtual address by the KTllC as either an I-space or a D-space address is made in the con-

text of each particular instruction, this trap routine returns the 18-bit physical addresses

associated with both the I-space and D-space virtual address. Other information whichis re-

turned are the contents of the PAR/PDR sets (both I and D-space registers) associated with

the particular virtual address.

TRAP 010 -Physical to Virtual Address Conversion Routine

This non-resident trap routine accepts an 18-bit physical address and returns allvirtual

addresses which reference this physical memory location. Since it is possible that several or

all I-space and/or D-space PAR/PDR sets could reference the same memory location, up to

16 different virtual addresses might be returned to the calling program.

TRAP (Ill -MIDOS Exit/Restart Routine

This resident trap routine is called to generate a DOS/BATCH system error. An error

code (16 bits) is passed on the stack to this trap routine. This routine then issues a call to

the EDP (error diagnostic print) package within DOS/BATCH. An error message of the form

‘A261 xxxxxx’ is issued. At this point the user may restart MIDOS using the $CO command to

DOS/BATCH or kill DOS using the SKILL command. It is not possible to restart the user-

program from this point.

TRAP 6 12 -Menu Display File Initializer

This is a non-resident trap routine which is used in conjunction with TRAP 013 to provide

a simple mechanism for interactive menu display. A menu file, containing up to 50 separate

display menus and created offline via a system program named CREDF, is attached by calling

this trap routine. The system common area is set up to reflect the number of menus in the

display file and the disk location (block address and word displacement) of each menu. Fatal

system errors associated with this routine are caused by a non-existent display file, a display

file format error, or a disk read error.

TRAP 813-Menu Display Routine

This non-resident trap routine attempts to display a menu, in conjunction with the MIDOS

system common information which has been set up by a prior call to TRAP 012 made by the

user program. The menu number requested is checked for validity and, if available, is ob-

tained from disk and passed to the RAMTEK display system via a .TRAN call to the device

driver. Associated with each menu, there may be a response table, i.e., a table which defines

areas associated with menu-interactive decisions made by the user. This information (if it

exists) is stored in the MIDOS system COMMON area for use by various system subroutines.

Fatal system errors associated with this routine are caused when no display file has been

94

previously attached via TRAP 012, or by a non-existent or out-of-range menu number, a display

file format error (more than 128 entries in response table), or DMA transfer errors either

from disk or to the RAMTEK display system.

TRAP OlQ-Scanline and Pixel Number Calculation Routine ~-
This non-resident trap routine calculates the line and pixel number for a given pixel dis-

played on the screen of the RAMTEK display system. In the course of image generation by the

application program CRTDIS, the system COMMON area is updated to reflect the line and pixel

limits currently displayed on the color monitor. It is possible to calculate the scan line and

pixel number for a physical RAMTEK screen coordinate based on the magnification factor in

both axes. Error return codes to the calling program are caused by a non-existent display

image or a screen pixel selection for which no scanner pixel exists. No fatal system errors

are possible.

3.3 APPLICATION PROGRAMS

3.3.1 DATA BASE CONTROL PROGRAM (IMAMAN)

Image Manipulation (IMAMAN) provides the user with the means to move multispectral

images to or from the MIDAS DISK system (see Table 7). The transfers can be made to or

from the following media: Computer Compatible Tape (CCT),High Density Digital Tape (HDT),

and Analog Tape. IMAMAN performs seven functions.

(1) Load an image from a media to MIDAS

(2) UNLOAD an image from MIDAS to some media

(3) LIST the directory on the MIDAS disk system

(4) delete an image from the MIDAS disk system

(5) LIST a report of the work done on a particular file

(6) rename a file and its associated files

(7) exit IMAMAN and return to user applications menu

The load function starts by allowing a selection of the type of device to be used for input.

Due to no HDT at this time, the only possible choice is CCT input. When CCT is selected, the

logical unit number of the drive on which the CCT is mounted is entered, with the format of
c

the tape and the file number desired.

The next step is to assign a nine-character name to the file which is to be generated. The

first character defines which of the two MIDAS disk drives will hold the file.

Then the choice is made as to what part of the scene is to be loaded onto the disk. Scan

lines can be selected starting at any line-number, and go to any line number with any integer

increment. The points on all selected scan line are selected in the same manner.

Channel selection is the next step. Each channel on the input medium can be selected or

not for inclusion in the output file.

95

- __--..

TABLE 7. OUTLINE OF FUNCTIONS PERFORMED BY IMAMAN

1. LOAD

A.

2
D.
E.
F.
G.
H.
I.

J;

Device Selection

(1) CCT

(a) UNIT #
(b) FORMAT
(c) FILE #

(2) HDT-NOT IMPLEMENTED
(3) ANALOG-NOT IMPLEMENTED

IMAGE NAME FOR OUTPUT
SCENE SELECTION
CHANNEL SELECTION
SCANNER WHICH GENERATED DATA
UPDATE TITLE RECORD
UPDATE SITE RECORD
UPDATE CHANNEL RECORD
OPTIONS

(1) PREVIEWING -NOT IMPLEMENTED
(2) STATISTICS-NOT IMPLEMENTED
(3) START LOADING PROCESS

PUT DATA IN FILE

2. UNLOAD-NOT IMPLEMENTED

3. DIRECTORY

4. DELETE A FILE

5. REPORT -NOT IMPLEMENTED

6. RENAME -NOT IMPLEMENTED

7. EXIT

96

The last piece of new information needed is the type of scanner which generated the data

about to be read in. This allows the software to correct for the direction of scan when images

are generated. This also makes some default information available.

The next three sections of input to the program allow the operator to change the informa-

tion about the file. This includes the title, site, and channel information. The information can

be changed or left unmodified.

At this point, the data is read from the input device and written on the MIDAS disk drives.

The unload function will simply take a disk file and copy that file unto the selected output

device.

The directory function gives the operator a means by which he can list the directory of

the two MIDAS disk drives.

The delete function allows for the removal fo a file from the disk system.

The report and rename functions have not been implemented at this time.

The EXIT function allows the operator to return to the USER-APPLICATIONS program to

select a different application.

3.3.2 DATA DISPLAY PROGRAM (DISPLA)
The data display program (DISPLA) provides the user with the means to generate color or

grayscale images either on the 63.5 cm CRT screen or on the hardcopy inkjet plotter (see

.Table 8). All data input is from the disk-database information system. The current algorithm,

which is implemented for both CRT and IJP output, is a manual-level-setting method, which

very simply assigns a particular color to a given set of input data levels. This algorithm was

the simplest implementation which provided all of the necessary display capabilities initially

required. Additional algorithms to provide multichannel false-color mapping and other sim-

ilar, more complex color image-mapping algorithms will be implemented and incorporated

into this program after user feedback provides information on the types of display functions

necessary for more complicated MIDAS processing tasks.

The DISPLA program’ initially asks the user for the type of display to be generated, to

which the user must respond with either the color CRT or the IJP as the output device. Once

the device has been selected, a multispectral data file must be specified via the standard nine-

character filename. If this file exists, the program inquires about the number of ChaMelS and

mode of the display. Since only the single-channel, manual mode is implemented, only these

responses will be treated as valid. Next, the program will request the type of display to be

generated: color or grayscale. Only these two responses are considered valid.

Next, the program will interrogate the user for the magnification factors to be used in

displaying the data. Two separate positive integer values must be entered, the width

97

TABLE 8. OUTLINE OF FUNCTIONS PERFORMED BY DATA DISPLAY

1. Select output device
A. Color 63.5 cm CRT
B. Inkjet plotter hardcopy product

2. Select input file for display

A. If file exists, go to 3
B. Goto

3. Select display mode

A. Select display algorithm
(Note: only manual level-setting implemented)

B. Select number of ChaMelS
(Note: only single-channel implemented)

C. Select color scheme
1. Color (default)
2. Grayscale

4. Select pixel and scan line magnification factors
(Note: default for both values is 1)

5. Select scene descriptor parameters

A. Enter channel number
B. Enter rectangular scene descriptor array

1. Start scan line number
2. Ending scan line number
3. Scan line increment
4. Starting pixel number
5. Ending pixel number
6. Pixel increment

6. Enter levels associated with each color

7. Enter default color value

8. Generate display

A. Read scan line from disk
B. Translate and magnify data into output data line
C. Transfer data to display device
D. Update common area image descriptor array, only if CRT is

output device

9. Go to 1

98

magnification (or pixel duplication factor) and the length magnification (or line duplication

factor). The default value for each of these is 1, producing an unmagnified image on the imag-

ing device.

Following this, the program will request the necessary information concerning the data

to be used for input to the image-generation package. The channel to be used must be entered

by the user. No default condition exists for this response. Once the existence of this channel

is verified, the rectangular scene to be displayed must be entered by. the user. Six integral

values must be entered describing the following parameters:

(1) starting scan line number (default: first line of file)

(2) ending scan line number (default: scan line number which will maximize size of the

image on the selected output device)

(3) scan line increment (default: file scan line increment value)

(4) starting pixel number (default: starting pixel number of file)

(5) ending pixel number (default: pixel number which will maximize size of the image on

the selected output device)

(6) the pixel increment (default: file pixel increment value)

Since the two imaging devices have upper bounds to the size of the image that they can display,

an error will be generated if the requested display is too large. The user will then have to

enter a new scene descriptor array compatible with the physical limitations of the display de-

vices. The RAMTEK is capable of generating images which are 510 pixels wide and an un-

limited number of lines in length (note that any image with more than 512 lines will have some

portion of the data scrolled off the screen). The inkjet plotter (IJP) is capable of generating

images on 21.6 X 27.9 cm paper which are 864 pixels wide and 1314 scan lines long.

After the plot extent has been described, the assignment of colors to input data levels

must be specified. A color is selected and the minimum and maximum range for the color is

entered. This process continues until all levels have been specified. Finally, a default color

must be specified to encompass those input data levels not assigned to a specific color.

Upon completion of this data entry phase, the color display is generated. The common

area is updated after every scan line to reflect the actual limits of the currently displayed

image. This information can be used by other applications programs in interacting with the

currently-displayed image.

3.3.3 FIELD DEFINITION AND DESCRIPTION (FLDMAN)

Field manipulation (FLDMAN) provides the user with the means to generate polygonal

training and test fields. The training field then can be used for signature extraction, and the,

test field can be used for post-classification analysis. There are three means by which the

field definitions can be made.

99’

II

(1) Draw the .polygon on the color monitor.

(2) Enter the vertices from the keyboard.,

(3) Read a 7-track magnetic tape with BCD card images of vertices;

Drawing on the color monitor is done by selecting the first vertex with the cursor and

hitting the “ENTER” button on trackball. The same is done for the other vertices. The end of

the field is signaled by hitting “ENTER” without moving the cursor. The field is checked for

errors and an inter-scan-line and inter-pixel increment are entered. Next the field name,

class and type are put in. The name is arbitrary, the class lumps fields together,and the type

is either test or training.

Entering the vertices from the keyboard is done by typing line and point number pairs for

each vertex. The end of the field is signaled by typing a carriage return with no pair of num-

bers preceding it. Then the increments, field name and class, and the type are entered as

described above.

When reading fields from magnetic tape, the same information is read from the tape in

the same order as in the other two methods until the end-of-file is found. The format of the

card images is shown in Table 9.

3.4 STATISTICAL PROGRAMS

3.4. I SIGNATURE MANIPULATION (SIGMAN)

Signature manipulation (SIGMAN) provides the user with the means to obtain signatures

for use with the classification hardware. SIGMAN uses the fields generated by the field manip-

ulation package. This program combines and scales signatures as well as extracting them.

When extracting signatures, the user selects from the current field file all the field names

and field classes which he wishes to use in calculating the signature. Next he selects which

channels are to be used in the calculations, and specifies the number of standard deviations

from the mean data value permitted for each channel. This criterion is used to exclude pixels

from the calculations. With this information, the signatures are calculated and the results

displayed.

If the user accepts the signature it is given a name and is written into a file. If the user

rejects the signature several alternate choices for calculating a new signature are available:,

(1) a new set of fields, (2) a new set of channels with the same fields, (3) different editing lim-

its with the same channels and fields.

When combining signatures, the user must specify the weight to be given to each of the

signatures. The signatures used must all have the same number of spectral channels. The

combined signature is then calculated in the following way:

m m z= c Wi$ Y== wi7
c

i=l i=l

100

TABLE 9. FORMAT OF CARDS FOR INPUT TO FIELD MANIPULATION

Vertices Cards

Column No.

::;fl

11-15
16-29

21-25
26-34

31-35
36-44

41-45
46-50

51-55
56-6$

61-65
66-7$

71-79

86

Information Cards

Column No.

l-5

6- ld

11-19

21-29

31

71-79

88

Content Card 1 Card 2 Card 3 Card 4 ~ - - -
line #

I point #

line # point # 1

line #
point >

line #
point B

line #
> point #

vertex 1 8

vertex 2 9

vertex 3 10

vertex 4 11

vertex 5 12

vertex 6 13

16 23

20

22

line #
1 point #

field #

vertex 7 14 21

(Use same # on all cards of each set)

1 through 4 to indicate card number for the appropriate
set of vertices.

Content

Inter-scan-line increment

Inter-pixel increment

Field Name

Field Type

Category: T = Test

G = Training

Field number as for vertices card

” 5”

101

m - -.
and new COV(X,Y)= cWi[COVi(X,Y) + xiyi] - z.‘=y

irl.

where fi = means for signature i; channel X z 7 ‘mean for combined signature; channel X

Fi = means for signature i; channel Y g = mean for combined signature; channel Y

Wi = weight for signature i m = number of signatures being combined

After the signatures are comscaled, the user provides a nine-character name for the new com-

scaled signatures to be stored on disk. This name is later referenced by the RAM load package

when setting up MIDAS.

The basic mathematical calculations are performed by a subroutine STAT.

3.4.2 SUBROUTINE STAT

If editing of the data base is requested (EDII< l), the upper and lower bounds for data values

in each channel are chosen so that no more than one out of a thousand are rejected.

These editing bounds are based on the median (as an estimate of the mean) and the quartile

value (as an estimate of the standard deviation). The actual standard deviation used for each

channel appears in QDEV, and the upper and lower editing limits for each channel appear in

EDHI and EDLO respectively. After the editing procedure, all the data points that were within

the editing limits in all Channels are the first NSS-NREJT data values in each channel. The

remaining data values in each channel were rejected,because at least one of the corresponding

data values in another channel was not within the editing limits. If fewer than two points are

considered good after the editing procedure, ISW is set to 2 and the subrouting returns. If

there are two or more good points after the editing procedure, the mean and median are de-

termined for each channel. Then the covariance matrix is calculated using the following equa-

tion:

DATA(K,I)*DATA(L,I) -

I

where COV = floating point, double-precision covariance matrix

NESS = the integer number of good data points

DATA = the integer array of data values

MEAN = the floating point, single-precision vector of the mean for each channel

The standard deviation for each channel is calculated by extracting the square root of the

diagonal elements of the covariance matrix. The correlation matrix is determined next

through use of the following equation:

if STD(K)*STD(L) = 0, COR(K,L) = 1.

102

where COR = correlation matrix; the diagonal elements will be all l’s and all off-diagonal

elements are between 0 and 1

COV = covariance matrix

STD = vector of the standard deviation for each channel

If the user has requested the eigenvectors and eigenvalues for the covariance matrix

(ISW f -J), these are calculated and the subroutine returns control to the calling program.

The floating point numbers which are generated by the STAT subroutine must be converted

into 16-bit RAM constants suitable for loading into the MIDAS Pre-processor and Classifier.

The various operations are described below for each parameter.

Means

The means used by MIDAS must be negated and scaled so that no more than eight bits in

2’s complement notation are used. That is, the high-order bit (bit 7) is used as a sign. There-

fore, the smallest number possible is:

1000OOOObase 2 = -12810

and the largest number possible is:

01111111 base 2 = +12710

The numbers coming from the signature file are in offset binary notation with the smallest

integer number represented by

00000000 base 2 = Olo

and the largest integer number represented by

11111111 base 2 = 25510

The incoming double-precision, floating-point mean is negated. The constant 12810 is then

added to the result to convert it to 2’s complement notation. This number is converted to in-

teger and put in the output buffer. If an input mean is 2256, an error message is printed. If

the data to be processed is positive magnitude, the conversion of the means to 2’s complement

is omitted.

Variances

The standard deviation for each channel is determined by calculating the square roots of

the diagonal elements of the covariance matrix. The standard deviation is inverted, scaled, and

converted to integer. MIDAS presently has only 12 bits available for this number. Therefore,

to obtain as many significant bits as possible, the standard deviations are subjected to the fol-

lowing restriction:

l<a

With this restriction, MAX [l/u] = 1.0 - 2-12. Jn binary this is:

0.111111111111 I 103

- II

This provides the maximum number of significant bits with no bits constantly 0 or constantly 1.

If a standard deviation is less than 1, the standard deviation is altered to make it just enough :

greater than 1 so that

- = 1.0 - 2-12 1
u

Consequently, the processing procedure is as follows:

1. A diagonal element of the covariance matrix is found, and its square root is calculated.

If no more, quit processing

2. If the result is greater than 1, go to step 3. Otherwise, multiply the diagonal element

by

I1 - 2!12)*J2

Then multiply the column of the upper diagonal covariance matrix (except the diagonal

element itself) by

1

(1 - 2-l2)*cJ

Then go back to step 1 and select the same diagonal element again. If c = 0, u is set

equal to
1 - i-12

3. Multiply this number by 2 12

1*2 12
u

4. Convert the result to integer and save it.

5. Go to step 1.

RAM Coefficients

To understand the reasons behind all the following mathematical manipulations, see the

mathematical analysis in Section 2. The processing goes as follows.

1. Calculate the correlation matrix from the covariance matrix.

2. Transpose the correlation matrix. This matrix must be transposed because the next

routine to use it was written in FORTRAN and expects all arrays to be stored in col-

umn-by-column instead of row-by-row form.

3. Calculate the eigenvalues and eigenvectors using the FORTRAN subroutine EIGEN.

4. Transpose the FORTRAN-form eigenvectors’ matrix.

5. Treat the eigenvalues as the diagonal element of a square matrix with all off-diagonal

elements set to zero.

6. Calculate the square root of each diagonal element and invert it,

104

‘7. Multiply this transformed matrix by the eigenvectors’ matrix and store the results

back in the eigenvectors’ matrix.

8. Find the largest element in absolute value in the new matrix, negate it, divide every

element of the new matrix by it, and save the constant.

9. Multiply the new matrix by 128 and convert it to integer. The low-order 8 bits are the

only significant bits that MIDAS can handle.

10. Take the.constant saved previously, square it, and store it in the output buffer following

the coefficient matrix (stored in row-by-row form).

Determinant

This program does no scaling on the determinant. The determinant is.found for the cov-

ariance matrix by performing a Gauss-Jordan inversion with partial pivotal elimination. The

double-precision, floating point natural logarithm is calculated and stored in the output buffer.

3.5 HARDWARE CONTROL PROGRAM (CLASFY)

The hardware control program (CLASFY) provides the user with the mechanism to set up

the MIDAS Preprocessor/Classifier hardware,and to generate the subsequent data file using

this hardware (see Table 10). The set -up of the hardware determines the algorithm which is

used to generate the new data file. The current implementation of this program allows the

following algorithmic selections: (1) quadratic classification of either four channels with up

to 16 classification types or eight ChaMelS with up to eight classification types, or (2) ratioing

of two Channels with the appropriate scaling necessary for retention of data significance..

The CLASFY program initially asks the user for any new set-up to be performed on the

multiplicative-additive scan angle correction function hardware. The options available here

are: (1) load the hardware with a user-selected function generated with the statistics package

(not yet implemented), (2) load the hardware such that no correction is performed, or (3) per-

form no action whatsoever, retaining the previous configuration. The program will perform

the desired action, and indicate in the COMMON storage area that the appropriate action has

been taken.

Next the user must select the type of output desired, either classification or ratioed data

generation. The classification algorithm currently implemented is a single-pass scheme with

a maximum number of signature classes of either 8 or 16, dependent on the number of input

channels; however, future implementations will include a multipass classification scheme with

a much larger number of signature classes (possibly as high as 255) available. The ratio op-

eration, as currently implemented, allows for generation of only one ratio between two input

channels, but a multi-pass multi-ratio scheme may be implemented in the future.

If the classification mode is selected, the user must select the channel subset to be used

in this classification pass. Once an acceptable channel subset has been selected, the signature

file and subset of signatures (if any) must be selected. If the number of Channels in the selected

105

TABLE 10. OUTLINE OF THE CLASSIFICATION FUNCTIONS

1. Load Preprocessor with appropriate correction functions

A. No function (wire set-up)
B. Function (l-dimensional) load

1. Read correction function from disk
2. Indicate correction function load in common area

2. Select type of output desired

A. Classification
1. Select number of channels and channel subset

(or default to all in signature set)
2. Select signature set (and subset of signatures if any)
3. Load signatures, into classifier and set-up appro-

priate L.C. and ratio paths, storing Preprocessor
description in common area

4. Select input filename (or default to current) and
output filename

5. Specify rectangular scene to be classified
(a) If enough disk space, go to 2.A.6
(b) Allow user to delete unwanted disk.files and

go to 2.A.4
6. Write output file title with classification description
7. Perform classification, tallying counts
8. Output tally counts, and go to 1

B. Ratio
1. Select input and output filenames
2. Specify rectangular scene to be ratioed

(a) If enough disk space, go to 2.B.3
(b) Allow user to delete unwanted disk files and

go to 2.B.1
3. Select numerator and denominator channels and

respective multiplicative weighting factors
4. Load preprocessor as described
5. Write output file title w. ratio description
6. Perform ratioing, writing output on disk
7. Go to 1

106

subset is four or less, up to 16 different signatures may be used; however, if the number of

ChaMelS is between five and eight, only eight signatures may be used. The program will then

load the Preprocessor linear combination and ratio hardware in such a manner that no linear

combinations or ratios are formed, and then load the selected signatures into the Classifier

hardware. Next the user must specify an input and an output filename. Then a scene speci-

fication for the rectangular area to be classified must be made. If enough disk space is avail-

able to hold the output classification information, a file of sufficient size will be created; other-

wise, a smaller rectangular scene specification must be re-entered. The actual classification

operation then begins and the classification results are stored on the disk. A running tally of

the classification results for each class is kept and output at the end of the classification oper-

ation.

If the ratioing mode is selected, the user is asked to specify input and output filenames

and a rectangular scene specification. If not enough disk space is available for the requested

scene, a smaller rectangular scene specification must be made. Next the ChaMd num.bers

for the numerator (N) and the denominator (D) channels must be specified. A scaling factor K,

where -32 < K < +31, must also be specified. This scaling factor affects the ratio R which is

formed such that

After these parameters have been specified, the ratioing operation will be performed and an

output file generated.

3.6 POST-CLASSIFICATION ANALYSIS (PANALY)

The post-classification data analysis program (PANALY) provides the user with a mechan-

ism for elementary statistical analyses of classification results generated by processing data

through the MIDAS classifier hardware (see Table 11). Calculation of class proportions and

classification accuracy matrices upon selected subsets of a scene are the two primary functions.

Upon entry to this program, the user selects the data file to be analyzed. If this file is not

a classification file as generated by the classification option of the program CLASFY, an exlst-

ing filename of this type must be re-entered. The user may then select the subset of the scene

to be analyzed by choosing those fields to be used from the current field definition list as form-

ulated by the program FLDMAN. The four options available for field selection are: (1) enter

up to 25 field names and up to 25 field classes to be used, (2) use all fields designated exclus- (

ively as “test fieids” at time of creation in FLDMAN, (3) use all fields designated exclusively

as “training fields” at time of creation in ‘FLDMAN, or (4) use all test and training fields for

analysis. Any or all of these options may be used for a given analysis task.

Next the user may optionally enter a scanner resolution element size in either hectares

or acres. If this value is not entered, the scanner-type designation found in the data file title

will provide the information for deciding the pixel ground area.

107

TABLE 11. OUTLINE OF THE POST-CLASSIFICATION ANALYSIS FUNCTIONS

1. Select input disk filename

A. If not classification file, go to 1

2. Select fields to be used in analysis from one of the following modes

A. Enter up to 25 field names and up to 25 field classes for analysis
B. Use all test fields
C. Use all training fields
D. Use all training and test fields

3. Select scanner resolution element size (default taken from data file title)

4. Select type of analysis output

A. Tally individual fields and/or
B. Tally all fields together and/or
C. Form confusion matrix based on all fields

5. Perform analysis processing and go to 1

108

Next the user must select the type of output to be generated on the line printer. Any or

all of the following options may be selected: (1) tally output (or pixel count and ground area

covered for each class) for each field separately, (2) tally output for all fields taken together,

and/or (3) form classification’accuracy, or confusion matrix based on all fields. This last

option consists of an N X N matrix which shows the number (or proportion) of pixels of class

At (as designated at creation time of each field used) that were actually classified as class A.,
J

where both i,j = 1 throughN, for 0 < N 5 16.

Once these parameters have been entered by the user, the field definition list, stored on

the RK05 system disk, is searched for the vertices of all fields included in the processing sub-

set. The data pixels designated by these vertices are obtained from bulk disk storage, and the

requested output information is computed and displayed on the line printer.

109

APPENDIX

THE USE OF APL IN HARDWARE SIMULATION

A.1 THE APL CLASSIFIEH SIMULATION

An APL simulation was written of the MIDAS Classifier in order to validate and document

the hardware design.

We can conceptually divide the pipeline into stages where each stage has the following

characteristics. A stage has a memory which maintains the result of a computation (for 1

clock) while the next computation proceeds. While in the true MIDAS Classifier these memory

components are edge-triggered devices, in our APL simulation they appear as master-slave

devices. Thus, the output of stage 1 is computed and placed in a register called STlM. At

the end of the clock pulse, the contents of STlM are transferred to STlS (its slave) and stage

1 can recompute STlM. While STlM is being recomputed, STlS is available for use by stage 2.

The nine classifier stages from the mean computation to exponent selection were simulated.

The major objective (consistent with the goals stated above) was to correctly compute the con-

tents of all memory elements and,thus,the state of the machine at each clock. Hence, the input

and output of each stage should be identical with that of the hardware. Further, all other mem-

ory elements in the simulation (accumulators, overflow flip-flops, etc.) should maintain the

exact state of the hardware. Within a stage, however, the simulation does not exactly reflect

all processor activity. No attempt is made to preciseiy simulate all logic.

Consider stage 2 which multiplies incoming data by a variance coefficient. In hardware,

this 8-bit by la-bit multiply was performed by an array of multiplier chips. While it might be

elegant to simulate these chips and their interconnections, the resultant multiplier simulation

would be very complex and very slow. If this type of detailed approach had been used through

the simulation, the resultant APL program would have been so slow that it would have been

almost useless as a system debugging aid. The 8-bit by la-bit multiply was actually simulated

by converting both input bit strings to integers, performing an integer multiply, and converting

back to a bit string. The result was identical to the result produced by the array of chips while

the approach was radically different. It should be clear that, with this level of simulation, the

program would be very useful in tracking down faulty multiply cards but useless for finding

the error within the card.

The program listing is given on pages 115-122 and illustrated in Figure A-l. The com-

ments should make the correspondence between stages and hardware components obvious.

Note that after all nine stages have completed their operation, the end of a clock is simulated

by transferring all master memory elements to their corresponding slaves and jumping to the

beginning of the program. It should also be pointed out that this program (for reasons of ef-

ficiency) simulates only one of four identical pipes. Note that when a memory is specified in

the first six stages, it is indexed by its pipe number.

111

Stage 1 5 2 4

I Clear

6

I Clear
-

AC’ CPC

f
8

Channel 0,8
I

Channel 15

1 c of
16

L
L

I

9
OVF

.
12 -
t
8 BUS

+

-I

+
I -

. .
12

OVF

.

------ --
. . .

Pipe 3 Out

0

FIGURE A-l. APL MIDAS SIMULATION (Continued)

7
L RAM
16 x 12

--12

S-L-

I 9

5
-L4

-
Load l

-Lc ! 0
16

r

-

Load
Class #

B A<B
,l -I
1 *La

,I

-I

I-

FIGURE A-l. APL MIDAS SIMULATION (Concluded)

J

In our simulation, the pipe number specified is always pipe zero. One could trivially

change this program to do a full four-pipe simulation by indexing through the four pipes in

sequence.

The first six stages of the pipeline (up through square accumulate) were actually simulated

using the program described above. The simulation results were found to be exactly correct

when compared to results obtained from the diagnostic system of the MIDAS with identical in-

puts. In fact, the simulation helped detect a small hardware failure in a portion of the Classi-

fier thought to be operational. We feel that this simulation technique could be of great value

in testing and maintaining the Classifier.

114

V MAIN
Cl1
c21

1::
CSI
[61
c71
CEI
c91
Cl01
Cl11
Cl21
Cl31
Cl41
Cl51
Cl61
Cl71
Cl91
Cl91
c201
c211
c221
c231
[241
[251
c261
C271
C281
c291
c301
c311
[321
c331
c341
c351
[361
r371
C381
c391
c401
c411
C421
II431
c441
c451
c461
c471
C481
c491
CSOI
c511
c521
c531
c541
c551
C561
c571
C581
c591
[601
[611
[621
[631
[641
C651

nSTAGE 1
nMEAl STAGE
nTRI.9 STAGE IS REPLICATED 4 TIMES TO DO 4 CLASSIFICATIONS
REACH COPY BAS ITS OWN 16x8 MEMORY
nMURAM+4 16 8~0
nIRAM IS USED TO SELECT CHANNEL INPUTS
nIRAM+l6 4pO

~ATAINcCRANRELC((YxlCY)+21CPCC2 T 31);3
+(-A/CPC) /N4
ICY+ICY+ 1
+(ICY<4)/N4
ICY+0
N4: ICY
STlMCO;l+DATAIN ADD8 MURAMCO;PdPC; 1
OVSRCO;O]+OVF
A
ASTAGE 2
n VARIANCE STAGE
nREPLICATED 4 TIMES
REACH HAS ITS OWN 16x12 ME?4ORY
nVARRAM+4 16 12~0
ST2MCO;l+STlSCO;lMPYET YARRAMCO;~ICPC;]
OVSRCO;ll+OVSRCO;llvOVF
n
nSTAGE 3
aMATRIX MULTIPLICATION
aTHERE ARE 32 SCALAR 6x8 MULTIPLIERS
nIT TAKES 4,8,OR 16 T-STEPS TO FORM AN INNER PRODUCT
nEACH MULTIPLIER HAS ITS OWN 16x8 RA:4
nCORAM+4 8 16 8~0
nTHERE ARE EIGHT OUTPUTS FOR EACH CLASSIFICATION
nST324+4 8 lop0
AI STEPS THROUGH THE 0 CONCURRENT I'~ULTIPLICATIONS
I+0
MPLP:ST3M[O;I;]+ST2S[O;],'4PYEE CORAMCo;I;21CPC;]
ST30VM[O ;Il+OVF
1+1+ 1
+(Is7)/MPLP
&STAGE 4 IS THE ADDITION LOOP FOR THE INNER PRODUCT.
mMMACM+4 6 12~0
ATHE INNER PRODUCT IS ACCUMULATED IN THE WMAC.
nMMACS+4 6 12~0
I+0
MPACLP:MMACIY[O;I;]+MMACS~O;I;IADD~~ ST3SCo;I;]
I+It 1
+(Is7)/MPACLP
R LOAD THE I'4ULTIPLY OUTPUT.
+(-MTXMXI)/(NLMO)
I+0
LMO:ST4WCO;I;l+iY;CS[O;I;lADDl2 ST3SCO;I;l
I+It 1
+(Is7)/LMO
MMA CM+MMA CS+CLEAR MMA C1'4
nSTAGE 5.
nSTAGE 5 SQUARES THE Y'S
aTHERE ARE 4 SUCH MULTIPLIERS
nSTSM+4 12~0
NLMO:SQIN+ST4S[O;MTXOP;l
OVF+-((h/SQINCO T 31)~~(v/S.?INCO T 31))
SQ~N+SQINCOl,SQIN[4 T 111.0
STSMCO; l+SQIN IYPYTT SQIN
OVSRCO;lll+OVSRCO;11l~OVF
&STAGE 6.
rrSQACM+ 4 16 p0

115

C661
c671
C681
[691
c701
c711
C721
c731
c741
c751
[761
c771
[781
c791
[801
[811
c821
1831
[841
[851
C861
c871
C881
c891
II901
II911
1921
c931
c941
L-951
c961
c971
[981
c991

SQAC~Y[O;l+SQACS[O;lSQAC~O 0 0 .STSS[O;l,O)
nD0 WE LOAD THE OUTPUT?
+(-SAMXI)/(LS0+4)
LSO:SQBS+SQACSCO;1SQAC(O 0 0 .STSSCO;1.0)
ST6MCO;l+SQSSCO T 111
SQACS+SQACM+CLEAR SQAC‘Y
ASTAGE 7
nST7th14 p0
&STAGE 7 MULTIPLIES BY THE CONSTANT X
MPYKOUT+ST6S(SAMXOP;)MPY1210 RRAtYCPMPC;l
ST7M+MPYKOUTC2 T 151
ni4PY1210 IS A 12 BY 10 MULTIPLIER.
DETECT+v/(OVLS[SAMXOP;O T ~~,(ECHANAOVLS[SA.YXOP;~ T 71))
ST~OV,Y+ST~OVSVDETECT
RSTAGS 8
nSTAGE 8 SUBTRACTS THE LOG TER:Y AND COHPUTES THE CHI BIT
ST8iY+(O 0 .ST7S)ADDl6(O,LRAY~(21cpC);I. 0 0 0)
STBOVI'~+ST~OVS
STBCHItY+CHIRAM CHICO.YP ST7S
nST8:M+l6 p 0
nSTACE 9
STAGE 9 XEEPS THE SiYALLEST EXPONENT
nALONG WITH ITS ASSOCIATED CLASS NU.IBER.
nST9M+16 p 0
ABESTEXP+lG p 0
CrYP+STaS EXPCOMP BESTEXPS
LOAD+CMPAST~OVSAST~CHIS
CLR+(((~~CPC)=/~)A-ECHAN)V(((~~CPC)=~)AECHAN)
BESTEXP:4+(-LOADAEESTEXPS)V(LOADAST~S)
CLASSNOM+(ECHANh(O,CPCCO T 21))v(LOADhCLASSNO)
+(-CLR)/NCLR
AWE :4UST LOAD THE OUTPUT LATCH AND CLEAR
STgM+BESTEXPM
ST9CNM+CLASSNOS

Cl001 CLASSNOtY+CLASSNOS+4pO
Cl011 BESTEXPM+BESTEXPS+l6pO
Cl021 lsMASTER TO SLAVE TRANSFERS.
Cl031 SHOV
Cl041 STlS+STliY
Cl051 ST2S+ST2M
cl061 ST3S+ST3M
Cl071 ST4S+ST4M
cl081 ST5S+ST5M
C 1091 SQACS+SQACM
Cl101 ST6S+ST6M
Cl111 ST7S+ST7M
Cl121 ST70VS+ST70VM
Cl131 ST8S+STBM
cl141 STBOVS+ST80VM
Cl151 ST9S+ST9M
Cl161 BESTEXPS+BESTEXPM
Cl171 CLASSNOS+CLASSNOM
Cl181 ST8CHIS+ST8CHIM
Cl191 OVLS+OVLM
C 120 1 MiYACS+MMACY
Cl211 CPC+INC CPC
Cl221 DISPLAY
cl231 +l

v

116

VABSCOI
V Z+ABS X;LEN

Cl1 LEN+pX
121 +(XC0I)/NEG

:::
z421x
-CO

c51 NEG:Z+2lCOMP X
C63 SIN+-SIN

V

VADDl2COl
V Z+X ADD12 Y;Xl;Yl;Zl

Cl1 x1421x
c23 Yl+2l(YCol.Yto3,Y)
c31 Z1+X1+Y1

'CSI Z+(12p2)TZl
c51 OVF+(XCO~AYCO~A-ZCO~~~((-X~O~~~(-Y~O~~~Z~O~~

V

VADD8COl
V Z+X ADD8 Y;Xl;Yl;Zl

L-11 x1421x
c21 Yl42LY
c31 Zl+X1+Y1
r43 Z+(8p2)TZl
c51 OVF+(XCO~AYCO~A(-ZCO~~~V((-XCO~~A(-YCO~~AZCO~~

V

VCHICOMPCO]
V Z+X CHICOMP Y;Xl;Yl

Cl1 x1421x
c21 Y142lY
c31 Z+X>Y

V

VCLEARC01
v Z+CLEAR X

Cl3 Z+(PX)PO
V

vCOMP[cl1
V Z+COMP X

Cl1 Z+INC(-X)

117

V DISPLAY
Cl1 Q+'CPC
c21 u+oPo
c31 CPC
c41 cl+OPO
c51 m-OPU
C61 Clc'STAGEl'

:i:
u+op 0
PRINT STlM

c91 u+oPo
Cl01 Cl+'STAGE2'
Cl11 ll+opo
Cl21 PRINT ST2M
Cl31 OCOPO
Cl41 f!k'STAGE3'
Cl51 cl+opo
Cl61 PRINT STBM
Cl71 m-OPO
Cl81 Pk'MMACIY'
Cl91 c+OPO
[201 PRINT MMACM
c211 ll+0P0
C221 l!l+'STAGE4'
C231 n+OpO
[241 PRINT ST4M
[251 tt+OpO
c261 O+*STAGES'
c271 cl+OPO
C281 PRINT ST5M
c291 o+ooo
i301
c311
c321
c331
c341
c351
c361
c371
[381
c391
c401
C411
[421

V

P.l+'iQACM'
o+oPo
PRINT SQACM
o+opo
Ch'STAGB6'
cl+oPo
PRINT ST6M
u+opo
b-'OVSR'
u+oPo
PRINT OVSR
III+OPO
o+oPo

VEXPCOMPC01
V 2+X EXPCOMP Y;Xl;Yl

Cl1 x1+21x
c21 Yl+21Y
c31 Z+XcY

V

vrNCCrl1
V Z+-IJC X;TiMP;LEN

Cl1 TEMP+21X
c21 LEN+pX
c31 TEMP+TEMP+l
c41 Z+(LENp2)TTEMP

V

118

I
-.

VINPUTC 01
V INPUT;ADVEC;ADDIN;MEMADDR;CADDR;DATA

Cl1 nREAD DATA INTO THE FUNCTIONAL MEMORIES OF TEE CLASSIFIER
c21 INLP:ADDIN+(G~~O)TO
c31 ADVEC+(16~2)T(BiADDIN)
c41 aTRE ADDRESS BAS BEEN CONVERTED TO A BINARY BIT STRING

:z:
MEMADDR+PIADVEC[~P T 151
CADDR+PIADVECCB T 111

II71 PIPE+21ADVEC[4 T 71
c81 +(v/ADVECCO T 51)/ERROR
c91 fiTHE TWO HIGR ORDER OCTAL DIGITS SHOULD BE ZERO.
cl01 nREAD TRE DATA
El11 DATA+(lSp2)T(8~((6plO)~o))
Cl21 nWHICR MEMORY ARE WE LOADING?
El31 +(CADDR=O)/MfJ

::z:
+(CADDR=l)/SIG
+((CADDRr2)A(CADDRs9))/MPY

C161 +(CADDR=IO)/KSB
Cl71 +(CADDR=ii)/LOG
Cl81 *ERROR
Cl91 nLOAD THE MEAN RAM
c201 MU:iYURAMCPIPE;MEMADDR;l+-DATAC4 T 111
c211 +INLP
:;;; f;;;'ARRAMI:PIPE;MEMADDR;I+-DATAC4 T 151

C241 MPY:CADDR+CADDR-2
[251 CORAMCPIPE;CADDR;MEMADDR;l+-DATAL.4 T 111
c261 +.TNLP
[271 KSQ:KRAMCPIPE;l+-DATAC4 T 151
C281 +INLP
t291 LOG:LRAMCPIPE;l+DATAC4 T 151
c301 +INLP
[311 ERROR:l+'ERROR'
c321 +INLP

V

VLCHANCOI
V LCHAN

Cl1 I+0
II23 CHANNEL[I ;I+COMP CHANNELCI;]
c31 I+I+l
c41 +2

V

VLICOI
v LI

Cl1 I+0
c21 IRAM[l;l+(4p2)~1
c31 I+I+ 1
c41 +2

V

V,YPYEEC01
V 2+X iYPYEE Y;Yl;Xl;Zl;TEMP

Cl1 niYULTIPLY ROUTINE FOR MATRIX PRODUCT
c21 nAN EIGHT BY EIGHT PRODUCT HIGH 10 BITS A.?E SELECTED
c31 SIN+0
c41 Xl+ABS X
L-51 Yl+ABS Y
c61 Z1+Xl*Yl
c71 TEMP+(16p2)TZl
[81 +(-SIN)/PLUSEE
c91 TEMP+COMP TEIYP
c 101 PLUSEE:Z+TE,YPCllOl
Cl11 OVF+O

V

119

VWPYETC 01.
V Z+X MPYET Y;Xl;Yl;Zl;TEE4P

Cl1 nEIGHT BY TEN MULTIPLICATION
c23 SIN+0
c31 Xl+ABS. X
c41 Yl+ARS Y
c51 21+X1xY1
c61 TE?dP+(20p2)~Zl
c71 nFINAL PRODUCT BITS ARE SELECTED FRO;4 TE:'4P
c81 +(-sYN)/PLuSET
c91 TEMP+COMP TEMP
Cl01 PLUSET:Z+TEMPC01,TEMP[6 T 121
Cl11 ROVERFLOW IS COMPUTED
[12] OVFc-((h/TE;4P[O T 51)~(v/TENPCO T 51))

V

VMPYTTCOI
V Z+X MPYTT Y;Xl;Yl;Zl;TEMP

Cl1 R TE,N BY TEN MULTIPLY
c21 Xl+ABS X
Cal Yl+ABS Y
141 Zl'+X1xY1
c51 TEMP+(2Op2)TZl
c61 Z+TEHPCl T 121

V

v~YPY121occlI
V Z+X MPY1210 Y;Xl;Yl;Zl

Cl1 x1+21x
c21 Yl+21Y
c31 Zl+XlxYl
c41 Z+(22p2)TZl

P

V;4TXMXIC 01
V Z+MTXsYXI

Cl1 Z+((-cPc[-])v(-ECHAN))~CPC~21~(-&w[31)
V

V,YTXOPCOJ
V Z+MTXOP

Cl1 Zc(21CPCcl T 31)+5
c21 +(Z<E)/O
Cal D-Z-8

V

VOUTC01
V Z+OUT X;LEN;TEMP

Cl1 LEN+pX
E21 LEN+r(LEN+B)
c31 TEMP+PIX
c41 TEMP+(LENPE)TTE!~P
c51 Z+lOlTEMP

V

120

V PRINT X;IMAX;JMAX;I;J;DIIY;K;KMAX;OVEC
Cl1 nROUTINE TO DISPLAY WEMORIES.
c21 CASE+ppX
c31 nFIND THE RANK OF THE MEMORY
c41 +(CASE+l)/SNOT
c51 RA SINGLY DIMENSIONED ARRAY (LATCH)
[61 U+OUT x
c71 +o
E81 SNOT:+(CASE*2)/DNOT
c91 A A DOUBLY DIiYENSIONED MEMORY
Cl01 DIM+pX
Cl11 IMAX+DIMCO1
Cl21 I+0
Cl31 OVEC+OpO
Cl41 DLP:OVEC+OVEC.OUT X[Y;1
Cl51 I+Itl
cl61 +(I<fMAX)/DLP
Cl71 q +OVEC
il8j +O
Cl91 DNOT:+(CASE*3)/TNOT
[203 AA TRIPLY DIMENSIONED ARRAY
C211 DIM+pX
C22 1 JMAX+DIMCOl
[231 IMAX+DIMC11
c241 KMAX+1
c251 K+l
[261 QLP:J+O
[271 TLP:OVEC+OpO
[281 I+0
C291 TLPP:+(CASE*3)/SKPP
C301 OVEC+OVEC.OUT XCJ;I;1
c311 +SKPPt 1
[321 SKPP:OVEC+OVEC,OUT XCK;J;I;I
c331 I+ltl
c341 +(IdMAX)/TLPP
C351 O+OVEC
c361 J+Jtl
c371 *(J<JMAX)/TLP
[381 n+OpO
C391 K+K+l
c401 +(K<KMAX)/QLP
c411 +o
C421 nQUADRUPLY DIMENSIONED ARRAY
C431 TNOT:DIM+pX
C441 KMAX+DIMCOl
E451 JMAX+DIMCll
[461 IMAX+DIMC21
C471 K+O
[481 -+0&P
c491 4

V

. ..I.. -mmlllmml .---..---

121

-

V RESET
‘Cl1 STlM+CLEAR STlM
c21

.c31
c41
c51
C61
c71
ES1
c91
Cl01
Cl11
Cl21
Cl31
Cl41
Cl51
cl61
Cl71
El81
Cl91
c201
c211

V

STlS+CLEAR STlS
STSM+CLEAR STPM
STSS+CLEAR STSS
STBM+CLEAR ST3M

,STSS+CLEAR STBS
MMACM+CLEAR MMACM
MMACS+CLEAR MMACS
ST4M+CLEAR ST4M
CPC+CLEAR CPC
ST4Sd'LEAR ST4S
ST5MdLEAR STSM
STSS+CLEAR STSS
STBM+CLEAR STBM
ST6SdLEAR STBS
OVLM+CLEAR OVLM
OVLS+CLEAR OVLS
OVSR+CLEAR OVSR
SQACM+CLEAR SQACM
SQACS+CLEAR SQACS
ICY+0

VSAMXICOI
V Z+SAiYXI

Cl1 ~+((-CPC[~])V(-ECHAN))ACPC[~~~~F~~~~
V

VSHOVCOI
V SHOV

Cl1 nSHIFT ROUTINE FOR OVERFLOW SHIFT REGISTER/
c21 OVLMCO;l+OVSR~O;l2 T 191
c31 *(-ECHAN)/FOUR
t-41 OVSRCO;l+O,OVSR~O;O T 181
CSI -*(FOURt2)
[61 FOUR:OVSR[O;lO T ~91+0VSRC0;51,0VSRC0;10 T 181
c ,7 1 OVSR[O;O T 514O.OVSRCO;O T 41
[81 OVSRL-0; 20 211+DETECT,OVSRC0;201

V

VSQACLO

;01
V Z+X SQAC Y;Xl;Yl;Zl

Cl1 x142 1x
II21 Yl42lY
c31 Zl+X1tYl
c41 Z+(16p2)TZl

V

OTC 01
V Z+X T Y

Cl1 z+(I((Y-x)tl))tx
V

122

-.

A.2 THE APL PREPROCESSOR SIMULATION

A Simulation of the ratio module of the pre-processor was also written in APL. The hard-

ware and block diagram are described in the text in Section 2.4.3. A listing of the sini&tion

and a sample run are given in the following pages. ,

123

I

V MAIND

II I I I.

I

Cl1
121
c31
II41
c51

:7:
[81
c91
Cl01
Cl11
Cl21
Cl31
Cl41
Cl51
cl61
Cl71
Cl81
Cl91
c201
c211
c221
1231
[241
C251
[261
c271
[281
c291
c301
c311
[321
c331
c341
L-351
[361
c371
c381
c391
c401
LSll
c421
c431
c441
c451
c461
c471
[481
CSSI
c501

nPRENORMALIZATION FOR DIVISION
nINPUTS ARE DIVDND. DIVSOR
nPRENORMALIZATION IS DONE IN ONE CLOCK
DSGN+DIVSORSCOI
SO+-DSGN
CX+DSGN
ATAKE THE ABSOLUTE VALUE OF THE DIVISOR
ANEGATIVE RESULT IMPLIES OVERFLOW fN ABSOLUTE VALUE COMPUTATION.
BUS412pO ACL12 DIVSORS
ABSOV+BUSCOl
nPRIOE IMITATES THE ACTION OF THE PRIORITY ENCODERS.
SC+PRIOE(-BUSCl T 111)
nSC IS A 5 BIT VECTOR AO,Al,AP,A3,OVF
ASHIFTING IS DONE NEXT
BUS+BUSC(SCCOlxE)T ll1.(SC~O1~8)pO
nTHH ABOVE LINE SHIFTS 0 OR 8 POSfTIONS
SN421SCCl T 31
BUS+-(BUSCSN T 111,SNpO)
nSHIFT 0 THROUGH 7 WITH A COMPLIMENT.
AINVERT SHIFTED RESULT
DSTOM+-BUS
nEXPONENT COMPUTATION FOLLOWS
CYF+l
EBUScSCRAMC2 T 71ADD6(0 0 ,SCCO T 31)
PRSTOM+DIVDNDS
RTRE DIVIDEND BECOMES THE FIRST PARTIAL REMAINDER
QESTOM+EBUS
DOSTOM+-(SC[41*(-ABSOV))
DSSTOM+DSGN
ANON-RESTORING DIVISION
ADONE IN THREE STAGES
@LATCHING PROVIDED FOR DIVISORsPARTIAL REMAINDER,AND QUOTIENT
ASTAGE 1
AQUOTIENT IN QSTOS+l2 p 0
ADIVIDEND IN DSTOS+l2 p 0
APARTIAL REMAINDER IN PRSTOS+l2 p0
DSSTlM+DSSTOS
DOSTlM+DOSTOS
QESTlM+QESTOS
DSTlM+DSTOS
QESTlM+QESTOS
ACARRY DIVISOR ALONG.
ASOI IS PASSED ONTO THE DIVIDE CARD.
SOI+PRSTOSCOl
nN0 SHIFT TRIS TIME.
PRSTlM+PRSTOS DIV DSTOS
ACOMPUTE 4 QUOTIENT BITS AND A NEW PARTIAL REMAINDER
QSTlM+QSTOSt4 T lll,QOUT
ADIVIDE STAGE 2
DSSTSM+DSSTlS

124

c511
c521
c531
c541
c553
C561
c571
[SE]
c591
[SO1
c611
[621

::t:
c651

DOST2M+DOSTlS
QESTPM+QESTlS
DSTPM+DSTlS
QESTPM+QESTlS
SOI+PRSTlSCO]
PRST2M+(PRSTlSCl T 111,O)DIV DSTlS
QST2M+QSTlS[4 T 111,QOUT
ADIVIDE STAGE THREE
DSSTBM+DSST2S
DOST3M+DOST2S
QEST3M+QEST2S
DSTBM+DSTSS
QEST3M+QEST2S
SOIcPRST2SCO1
PRST3)4+(PRSTPS[l T lll.O)DIV DSTPS

C661 QST3M+QST2SC4 T 111,QOUT
‘(671 nPOST NORMALIZATION TAKES PLACE IN ONE CLOCK.
C681 nTHE INPUTS ARE QST3S.QEST3S.DSST3S.DOST3S.
C691 nFIRST WE MUST TAKE THE ABS VALUE OF Q AND COMPUTE QSGN.
C701 MSB+-QST3SCOl
1711 QSGN+MSBsDSSTBS
C721 SO+QSTSSCOl
C731 CX+MSB
C741 LSB+-PRSTJSCOI
C751 QBUS+(l2pO)ACLl2(QST3SCl T 111,LSB)
C761 ABSOV+COUT
1771 ATHIS TWO'S COMPLIMENT NUMBER IS CONVERTED TO.SIGN MAGNITUDE
CT81 nA SHIFT DIRECTION AND AMOUNT.
C791 CX+QEST3SCOl
CEO1 SO+-CX
C811 aQEST3S HAS A TWO'S COMP SHIFT COUNT.
C821 LEFT+-EBUSCO]
C831 CX+-LEFT
[841 SO+LEFT
[ES] ADDOUT+(EpO)ACLE(O 0 .QEST3S)
C861 EBUScADDOUTC2 T 71
C871 nSHIFT 0 OR EIGHT.
C881 EIGHT+EBUSC21
[ES] STR+(-LEFT)hEIGHT
C901 QBUS+(-STR)A((EIGHTA(QBUS[E T ~~~.(E~O)))V((-EIGHT)AQBUS))
C911 QOVFl+-((EIGHThQBUSCO T ~I)V((-EIGHT)AEPO))
C921 QBUSl+QBUS,4pO
C931 nSN IS A SHIFT COUNT
C941 SN+21EBUSC3 T 51
C951 QET+-((-LEFT)A((SNpO),QBUSCO T(7-SN)]))v((LEFT)A(QBUSl[SN T(7tSN)l))
C961 RSHIFT 0 THROUGR SEVEN RIGHT OR LEFT.
C971 QOVF2+(-((LEFT)A(((7-SN)pO).QBUS~O TCSN-1)1))).1
c981 nCOMPUTE THE FINAL OVERFLOW.
1991 DOST4M+-(DOST3SA(-ABSOV)A(N((-h/BOVFl)V(NA/QOVF2))~ANV/EBUS~O T 11)
cl001 CX+QSGN

_ 125

c1013 S0+QSCR
Cl021 QETS+(8PO)ACzE QET
Cl031 QST4~+(CGUT+QSGN).QETS
Cl043 WASTER TO SLAVE TRARSFERS
Cl051 DSSTOS+DSSTON
Cl061 DOSTOS+DOSTOM
ElO7l'QESTOS+QESTOH
tlO81 PRSTOS+PRSTOM
Cl091 DSTOBDSTOH
[I101 QESTOS+QESTOW
tllll DSSTlS+DSSTlM
Cl121 DOSTlS+DOSTlM
Cl131 QBSTlS+QESTlM
Cl141 QSTlS+QSTlM
Cl151 DSTlS+DSTlM
[I161 PRSTlS+PRSTlM
Cl171 QBSTlS+QESTlM
11181 DSSTPS+DSSTPM
Cl191 DOSTPS+DOSTPM -~. -
[120 1 QEST2S+QEST2M
Cl211 QST2S+QST2M
Cl221 DST2S+DST2M
Cl233 QEST2S+QEST2M
cl241 PRST2S+PRST2M
cl251 DSST3S+DSST3M
l-1261 DOST3S+DOST3M _-~ -
cl271 QST3S+QST3M
cl281 QEST3S+QEST3M
I1291 PRST3S+PRST3M

126

1. -

V
Cl1
c21

:::
CSI
C61
171

c31
c41
c51
[61
c71

V
Cl1
c21
CSI
CSI

V
Cl1
c21
c31
c41
c51
C61
r.71
CEI
t91
Cl01
Cl11
Cl21
Cl31
Cl41
Cl51
cl61
Cl71
Cl81
Cl91
c201
c211
c221

V
Cl1
c21
c31
t41
CSI
[61
c71

.V Z+X T Y
Cl1 z+(l((Y-x)+l))+x

D-X ACZlP Y;Xl;Pl;Zl;TEMP
Y4SOAY)V((-SO IA--Y)
x1+21x
rl+21Y
zl+xl+Xl+cx
TEMP+(l3p2 1~21
CODT+TEMPCOl
Z+TEMP[l T 121

2+X ACZE Y;Xl;Yl:Zl;TEMP
Y+(soAY)v((-SO)AyY)
Xl+2rX
Yl+2U
zl+xl+Y1tcx
TEMP+(9p2 jr21
Z+TEMPCl T 81
COUT+TEMPCOl

Z+X ADD6 Y;Xl;Yl;Zl
x1+21x
Yl+2LY
Zl+XltYltCYF
Z+(6p2)TZl

RPP4+PR DIV DIVISOR
BOUT+-SOI
a.50 DETERMINES WHETHER WE ADD OR SUBTRACT.
so+so1
cx+T!To
PR+PR ACLl2 DIVISOR
SO+PRCO]
cx+-so
PR+PRCl T 111.0
A THE PARTIAL REMAINDER IS SHIFTED.
QOUT+QOUT.-SO
PR+PR ACLIP DIVISOR
SO+PRCO]
cx+-so
PR+PR[l T 111.0
QOUT+QOVT.-SO
PR+PR ACL12 DIVISOR
SO+PRC 01
cx+-s 0
PR+PRCl T ii].0
QOVT+QOUT.-SO
PR+PR ACL12 DIVISOR
RPP4cPR

SC+PRIOE X;OVFC;SCN
SCN+O
LP:+((-X[SCN])v(SCN=lO))/OUT
SCN+SCNtl
+LP
AFIND THE RICHEST ORDER ZERO BIT
OCIT:SC+((~~~)TSCN),-XCSCNI
nIF X[SCN]=l WE MUST HAVE OVERFLOW (STRING OF ALL ONES)

I

127

- -~

SCRAM
1 11 11110

DIVDNDS
001000110000

DIVSORS
1110010 0 0 0 0 0

MAIND
MAIND
MAIND
MAIND
TAMAINDc(ll29)tl
MAIND

MAINDC41 1
MAINDCS] 0
MAINDC61 1
MAINDC91 0 0 0 1 1 1 0 0 0 0 0 0
MAINDClO] 0
MAINDCl21 0 0 1 0 1
MAINDCIS] 0 0 0 1 1 1 0 0 0 0 0 0
MAINDCl71 2
MAINDC181 1 0 0 0 1 1 1 1 1 1 1 1
MAINDC21.1 0 l 1 1 0 0 0 0 0 0 0 0
MAINDC 23’1 1
MAINDC241 0 0 0 0 0 1
MAIND[25] 0 0 1 0 0 0 1 1 0 0 0 0
MAINDC271 0 0 0 0 0 1
MAINDC281 1
MAINN 291 I
MAINDC371
MAINDC381
MAIND[39]
MAIND[401
MAINDC411
MAINDC441
MAIND[:46]
MAINDC481
MAINDC501
MAINDCS 11
MAINDI: 521
MAINDC53 1
MAINDC 541
MAINDC551
MAINDC561
MAINDC 571
MAINDC591
MAINDC601
MAINDC611
MAINDC621
MAINDC631
MAINDc641

1
.
~00001
011100000000
0 0 0 0 01
0
110010000000
000000001001
1

~00001
01110 0 0 0 0 0 0 0
0 0 0 0 0 1

;00100000000
000010010100
1
1
0 0 0 0 01
01110 0 0 0 0 0 0 0
0 0 0 0 01
1

MAINDi65j 1 0 0 1 0 0 0 0 0 0 0 0
MAIND[66] 1 0 0 1 0 1 0 0 0 0 0 0
MAINDC701 0
MAINDC 711 1
MAINDC721 1

128

MAINDt 731 0
MAINDt 741 0
MAIND[751 0 0 1 0 1 0 0 0 0 0 0 0
MAINDC761 0
MAINDC 791 0
MAINDt801 1
MAINDC 821 1
MAINDC831 0
MAINPt841 1
MAINDC851 0 0 0 0 0 0 0 l
MAINDC861 0 0 0 0 0 1
MAINDC881 0
MAINDC891 0
MAIND[90] 0 0 1 0 1 0 0 0 0 0 0 0
MAINDC911 1 1 1 1 1 1 1 1
MAIND[92] 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
MAINDC941 1
MAINDC951 1 0 1 0 1 1 1 1
MAINDC971 1 1 1 1 1 1 1 1
MAINDC991 0
MAINDCIOOI 1
MAINDClOll 1
MAINDClO21 1 0 1 1 0 0 0 0
MAINDCl031 1 1 0 1 1 0 0 0 0
MAlND[lO51 1
MAINDC 1061 1
MAINDClO71 0 0 0 0 0 1
MAINDCl08] 0 0 1 0 0 0 1 1 0 0 0 0
MAIND[lO91 0 1 1 1 0 0 0 0 0 0 0 0
MAINDCllOl 0 0 0 0 0 1
MAINDCl111 1
MAINDC1121 1
MAINDCl131 0 0 0 0 0 1
MAINDC1141 0 0 0 0 0 0 0 0 1 0 0 1
MAINDC1151 0 1 1 1 0 0 0 0 0 0 0 0
MAINDCll61 1 1 0 0 1 0 0 0 0 0 0 0
MAINDCl171 0 0 0 0 0 1
MAINDCl181 1
MAINDCll91 1
MAINDC1201 0 0 0 0 0 1
MAINDC1211 0 0 0 0 1 0 0 1 0 1 0 0
MAINDCl221 0 1 1 1 0 0 0 0 0 0 0 0
MAINDCl23J 0 0 0 0 0 1
MAINDCl241 1 0 0 1 0 0 0 0 0 0 0 0
MAINDCl251 1
MAINDCl261 1
MAINDCl271 1 0 0 1 0 1 0 0 0 0 0 0
MAINDCl281 0 0 0 0 0 1
MAINDCl291 1 0 0 1 0 0 0 0 0 0 0 0

NASA-Langley, 1977 CR-2730 129

